Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Blockchain and Deep Learning-Based IDS for Securing SDN-Enabled Industrial IoT Environments

Poorazad, Samira Kamali; Benzaïd, Chafika; Taleb, Tarik (2024-02-26)

 
Avaa tiedosto
nbnfioulu-202403012071.pdf (7.026Mt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM54140.2023.10436839

Poorazad, Samira Kamali
Benzaïd, Chafika
Taleb, Tarik
IEEE
26.02.2024

S. K. Poorazad, C. Benzaïd and T. Taleb, "Blockchain and Deep Learning-Based IDS for Securing SDN-Enabled Industrial IoT Environments," GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023, pp. 2760-2765, doi: 10.1109/GLOBECOM54140.2023.10436839

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/globecom54140.2023.10436839
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202403012071
Tiivistelmä
Abstract

The industrial Internet of Things (IIoT) involves the integration of Internet of Things (IoT) technologies into industrial settings. However, given the high sensitivity of the industry to the security of industrial control system networks and IIoT, the use of software-defined networking (SDN) technology can provide improved security and automation of communication processes. Despite this, the architecture of SDN can give rise to various security threats. Therefore, it is of paramount importance to consider the impact of these threats on SDN-based IIoT environments. Unlike previous research, which focused on security in IIoT and SDN architectures separately, we propose an integrated method including two components that work together seamlessly for better detecting and preventing security threats associated with SDN-based IIoT architectures. The two components consist in a convolutional neural network-based Intrusion Detection System (IDS) implemented as an SDN application and a Blockchain-based system (BS) to empower application layer and network layer security, respectively. A significant advantage of the proposed method lies in jointly minimizing the impact of attacks such as command injection and rule injection on SDN-based IIoT architecture layers. The proposed IDS exhibits superior classification accuracy in both binary and multiclass categories.
Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen