Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meta-learning based few pilots demodulation and interference cancellation for NOMA uplink

Issa, Hebatalla; Shehab, Mohammad; Alves, Hirley (2023-07-26)

 
Avaa tiedosto
nbnfi-fe20231004138754.pdf (586.8Kt)
nbnfi-fe20231004138754_meta.xml (33.32Kt)
nbnfi-fe20231004138754_solr.xml (31.35Kt)
Lataukset: 

URL:
https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188320

Issa, Hebatalla
Shehab, Mohammad
Alves, Hirley
Institute of Electrical and Electronics Engineers
26.07.2023

H. Issa, M. Shehab and H. Alves, "Meta-Learning Based Few Pilots Demodulation and Interference Cancellation For NOMA Uplink," 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023, pp. 84-89, doi: 10.1109/EuCNC/6GSummit58263.2023.10188320

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188320
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231004138754
Tiivistelmä

Abstract

Non-Orthogonal Multiple Access (NOMA) is at the heart of a paradigm shift towards non-orthogonal communication due to its potential to scale well in massive deployments. Nevertheless, the overhead of channel estimation remains a key challenge in such scenarios. This paper introduces a data-driven, meta-learning-aided NOMA uplink model that minimizes the channel estimation overhead and does not require perfect channel knowledge. Unlike conventional deep learning successive interference cancellation (SICNet), Meta-Learning aided SIC (meta-SICNet) is able to share experience across different devices, facilitating learning for new incoming devices while reducing training overhead. Our results confirm that meta-SICNet outperforms classical SIC and conventional SICNet as it can achieve a lower symbol error rate with fewer pilots.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen