Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aggregated Euclidean Distances for a fast and robust real-time 3D-MOT

Sadli, Rahmad; Afkir, Mohamed; Hadid, Abdenour; Rivenq, Atika; Taleb-Ahmed, Abdelmalik (2021-08-12)

 
Avaa tiedosto
nbnfi-fe202301051597.pdf (6.635Mt)
nbnfi-fe202301051597_meta.xml (36.53Kt)
nbnfi-fe202301051597_solr.xml (35.08Kt)
Lataukset: 

URL:
https://doi.org/10.1109/jsen.2021.3104390

Sadli, Rahmad
Afkir, Mohamed
Hadid, Abdenour
Rivenq, Atika
Taleb-Ahmed, Abdelmalik
Institute of Electrical and Electronics Engineers
12.08.2021

R. Sadli, M. Afkir, A. Hadid, A. Rivenq and A. Taleb-Ahmed, "Aggregated Euclidean Distances for a Fast and Robust Real-Time 3D-MOT," in IEEE Sensors Journal, vol. 21, no. 19, pp. 21872-21884, 1 Oct.1, 2021, doi: 10.1109/JSEN.2021.3104390

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/jsen.2021.3104390
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301051597
Tiivistelmä

Abstract

Autonomous driving systems must have the ability to monitor the kinematic behaviour of multiple obstacles. Therefore, 3D multi-object tracking (3D-MOT) is one of the crucial modules in autonomous driving to detect the presence of potential hazard movements such as human operated vehicles and pedestrians. In this work, we present a novel online 3D multi-tracking system that uses the Aggregated Euclidean Distances (AED) in data association module instead of using Intersection over Union (IoU) as a new metric. AED is used in order to obtain the relationship between predicted tracks and current object detections. There are several benefits from using AED in data association module. Firstly, it can reduce the system’s complexity so that the execution time can be significantly reduced (as calculating Euclidean distances is much faster than obtaining 3D-IoU). Secondly, AED can provide distance measurement even when there is no overlaps between the predicted tracks and the current detections, while 3D-IoU produces zeros for non-overlapping cases. To demonstrate the validity of our proposed method, we performed extensive experiments on KITTI multi-tracking benchmark and nuScenes validation datasets. The experimental results are compared against the open-sourced state of the art 3D MOTs such as AB3DMOT, FANTrack, and mmMOT. Our method clearly outperforms the AB3DMOT baseline method and other methods in terms of accuracy and/or processing speed.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen