HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children
Salami, Falastin; Tamura, Roy; You, Lu; Lernmark, Åke; Larsson, Helena Elding; Lundgren, Markus; Krischer, Jeffrey; Ziegler, Anette-Gabriele; Toppari, Jorma; Veijola, Riitta; Rewers, Marian; Haller, Michael J.; Hagopian, William; Akolkar, Beena; Törn, Carina; The TEDDY Study Group (2022-12-20)
Salami, F, Tamura, R, You, L, et al. HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children. Pediatr Diabetes. 2022; 23( 8): 1586- 1593. doi:10.1111/pedi.13413
© 2022 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
https://creativecommons.org/licenses/by-nc/4.0/
https://urn.fi/URN:NBN:fi-fe202301203953
Tiivistelmä
Abstract
Objective: Increased level of glycated hemoglobin (HbA1c) is associated with type 1 diabetes onset that in turn is preceded by one to several autoantibodies against the pancreatic islet beta cell autoantigens; insulin (IA), glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8). The risk for type 1 diabetes diagnosis increases by autoantibody number. Biomarkers predicting the development of a second or a subsequent autoantibody and type 1 diabetes are needed to predict disease stages and improve secondary prevention trials. This study aimed to investigate whether HbA1c possibly predicts the progression from first to a subsequent autoantibody or type 1 diabetes in healthy children participating in the Environmental Determinants of Diabetes in the Young (TEDDY) study.
Research Design and Methods: A joint model was designed to assess the association of longitudinal HbA1c levels with the development of first (insulin or GAD autoantibodies) to a second, second to third, third to fourth autoantibody or type 1 diabetes in healthy children prospectively followed from birth until 15 years of age.
Results: It was found that increased levels of HbA1c were associated with a higher risk of type 1 diabetes (HR 1.82, 95% CI [1.57–2.10], p < 0.001) regardless of first appearing autoantibody, autoantibody number or type. A decrease in HbA1c levels was associated with the development of IA-2A as a second autoantibody following GADA (HR 0.85, 95% CI [0.75, 0.97], p = 0.017) and a fourth autoantibody following GADA, IAA and ZnT8A (HR 0.90, 95% CI [0.82, 0.99], p = 0.036). HbA1c trajectory analyses showed a significant increase of HbA1c over time (p < 0.001) and that the increase is more rapid as the number of autoantibodies increased from one to three (p < 0.001).
Conclusion: In conclusion, increased HbA1c is a reliable time predictive marker for type 1 diabetes onset. The increased rate of increase of HbA1c from first to third autoantibody and the decrease in HbA1c predicting the development of IA-2A are novel findings proving the link between HbA1c and the appearance of autoantibodies.
Kokoelmat
- Avoin saatavuus [34150]