Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

On using Monte-Carlo tree search to solve puzzles

Kiarostami, Mohammad Sina; Daneshvaramoli, Mohammadreza; Monfared, Saleh Khalaj; Visuri, Aku; Karisani, Helia; Hosio, Simo; Khashehchi, Hamed; Futuhi, Ehsan; Rahmati, Dara; Gorgin, Saeid (2021-10-15)

 
Avaa tiedosto
nbnfi-fe2022022520848.pdf (1.242Mt)
nbnfi-fe2022022520848_meta.xml (53.01Kt)
nbnfi-fe2022022520848_solr.xml (38.82Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3477911.3477915

Kiarostami, Mohammad Sina
Daneshvaramoli, Mohammadreza
Monfared, Saleh Khalaj
Visuri, Aku
Karisani, Helia
Hosio, Simo
Khashehchi, Hamed
Futuhi, Ehsan
Rahmati, Dara
Gorgin, Saeid
Association for Computing Machinery
15.10.2021

Mohammad Sina Kiarostami, Mohammadreza Daneshvaramoli, Saleh Khalaj Monfared, Aku Visuri, Helia Karisani, Simo Hosio, Hamed Khashehchi, Ehsan Futuhi, Dara Rahmati, and Saeid Gorgin. 2021. On Using Monte-Carlo Tree Search to Solve Puzzles. 2021 7th International Conference on Computer Technology Applications. Association for Computing Machinery, New York, NY, USA, 18–26. DOI:https://doi.org/10.1145/3477911.3477915

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in 7th International Conference on Computer Technology Applications, https://doi.org/10.1145/3477911.3477915.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3477911.3477915
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022520848
Tiivistelmä

Abstract

Solving puzzles has become increasingly important in artificial intelligence research since the solutions could be directly applied to real-world or general problems such as pathfinding, path planning, and exploration problems. Selecting the best approach to solve puzzles has always been an essential issue. Monte-Carlo Tree Search (MCTS) has surged into popularity as a promising approach due to its low run-time and memory complexity. Thus, it is required to know how to employ this method to solve the puzzles.

In this work, we study the applicability of MCTS in solving puzzles or solving a puzzle with MCTS, not comparing many MCTS approaches. We propose a general classification of puzzles based on their features. This classification consists of four primary classes that provide a mathematical formula for each and their satisfactory criteria. This classification let us know how to utilize MCTS based on the puzzle’s features. We pass each puzzle to an MCTS algorithm as a series of satisfaction functions based on this mathematical formulation. The classification can perform general pathfinding or path-planning if the outlining problem is defined within the described mathematical constraints. MCTS progressively solves a puzzle until the functions are completely satisfied in our proposed classification. We examine different puzzles for each class using our proposed methodology. Furthermore, to evaluate the proposed method’s performance, each of these puzzles is compared with their available SAT solvers using the Z3 implementation and different variations of MCTS that are generally used.

Kokoelmat
  • Avoin saatavuus [38549]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen