Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Social interaction tracking and patient prediction system for potential COVID-19 patients

Sandeepa, Chamara; Moremada, Charuka; Dissanayaka, Nadeeka; Gamage, Tharindu; Liyanage, Madusanka (2020-10-13)

 
Avaa tiedosto
nbnfi-fe2020111790691.pdf (565.7Kt)
nbnfi-fe2020111790691_meta.xml (36.35Kt)
nbnfi-fe2020111790691_solr.xml (34.12Kt)
Lataukset: 

URL:
https://doi.org/10.1109/5GWF49715.2020.9221268

Sandeepa, Chamara
Moremada, Charuka
Dissanayaka, Nadeeka
Gamage, Tharindu
Liyanage, Madusanka
Institute of Electrical and Electronics Engineers
13.10.2020

C. Sandeepa, C. Moremada, N. Dissanayaka, T. Gamage and M. Liyanage, "Social Interaction Tracking and Patient Prediction System for Potential COVID-19 Patients," 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 2020, pp. 13-18, doi: 10.1109/5GWF49715.2020.9221268

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/5GWF49715.2020.9221268
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020111790691
Tiivistelmä

Abstract

Coronavirus disease 2019 (COVID-19) virus is an infectious disease which has spread globally since 2019, resulting in an ongoing pandemic. Since it is a new virus, it takes some time to develop a vaccine against it. Until then, the best way to prevent the fast spread of the virus is to enable the proper social distancing and isolation or containment to identify potential patients. Since the virus has up to 14 days of the incubation period, it is important to identify all the social interactions during this period and enforce social isolation for such potential patients. However, proper social interaction tracking methods and patient prediction methods based on such data are missing for the moment. This paper focuses on tracking the social interaction of users and predict the infection possibility based on social interactions. We first developed a BLE (Bluetooth Low Energy) and GPS based social interaction tracking system. Then, we developed an algorithm to predict the possibility of being infected with COVID-19 based on the collected data. Finally, a prototype of the system is implemented with a mobile app and a web monitoring tool. In addition, we performed a simulation of the system with a graph-based model to analyze the behaviour of the proposed algorithm and it verifies that self-isolation is important in slowing down the disease progression.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen