Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Face anti-spoofing via sample learning based recurrent neural network (RNN)

Muhammad, Usman; Holmberg, Tuomas; Carneiro de Melo, Wheidima; Hadid, Abdenour (2019-07-19)

 
Avaa tiedosto
nbnfi-fe2020041516593.pdf (353.2Kt)
nbnfi-fe2020041516593_meta.xml (35.78Kt)
nbnfi-fe2020041516593_solr.xml (25.20Kt)
Lataukset: 

URL:
https://bmvc2019.org/wp-content/uploads/papers/0973-paper.pdf

Muhammad, Usman
Holmberg, Tuomas
Carneiro de Melo, Wheidima
Hadid, Abdenour
British Machine Vision Association Press
19.07.2019

Muhammad, U., Holmberg, T., Carneiro de Melo, W., Hadid, A., Face anti-spoofing via sample learning based recurrent neural network (RNN), The British Machine Vision Conference 2019 (BMVC) 9th-12th September 2019, Cardiff UK, p. 1-12

https://rightsstatements.org/vocab/InC/1.0/
© 2019. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020041516593
Tiivistelmä

Abstract

Face biometric systems are vulnerable to spoofing attacks because of criminals who are developing different techniques such as print attack, replay attack, 3D mask attack, etc. to easily fool the face recognition systems. To improve the security measures of biometric systems, we propose a simple and effective architecture called sample learning based recurrent neural network (SLRNN). The proposed sample learning is based on sparse filtering which is applied for augmenting the features by leveraging Residual Networks (ResNet). The augmented features form as a sequence, which are fed into a Long Short-Term Memory (LSTM) network for constructing the final representation. We show that for face anti-spoofing task, incorporating sample learning into recurrent structures learn more meaningful representations to LSTM with much fewer model parameters. Experimental studies on MSU and CASIA dataset demonstrate that the proposed SLRNN has a superior performance than state-of-the-art methods used now.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen