Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reinforcement learning based scheduling algorithm for optimizing age of information in ultra reliable low latency networks

Elgabli, Anis; Khan, Hamza; Krouka, Mounssif; Bennis, Mehdi (2020-01-27)

 
Avaa tiedosto
nbnfi-fe2020040912063.pdf (620.3Kt)
nbnfi-fe2020040912063_meta.xml (35.41Kt)
nbnfi-fe2020040912063_solr.xml (33.63Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ISCC47284.2019.8969641

Elgabli, Anis
Khan, Hamza
Krouka, Mounssif
Bennis, Mehdi
IEEE Computer Society
27.01.2020

A. Elgabli, H. Khan, M. Krouka and M. Bennis, "Reinforcement Learning Based Scheduling Algorithm for Optimizing Age of Information in Ultra Reliable Low Latency Networks," 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 2019, pp. 1-6, https://doi.org/10.1109/ISCC47284.2019.8969641

https://rightsstatements.org/vocab/InC/1.0/
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ISCC47284.2019.8969641
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2020040912063
Tiivistelmä

Abstract

Age of Information (AoI) measures the freshness of the information at a remote location. AoI reflects the time that is elapsed since the generation of the packet by a transmitter. In this paper, we consider a remote monitoring problem (e.g., remote factory) in which a number of sensor nodes are transmitting time sensitive measurements to a remote monitoring site. We consider minimizing a metric that maintains a trade-off between minimizing the sum of the expected AoI of all sensors and minimizing an Ultra Reliable Low Latency Communication (URLLC) term. The URLLC term is considered to ensure that the probability the AoI of each sensor exceeds a predefined threshold is minimized. Moreover, we assume that sensors tolerate different threshold values and generate packets at different sizes. Motivated by the success of machine learning in solving large networking problems at low complexity, we develop a low complexity reinforcement learning based algorithm to solve the proposed formulation. We trained our algorithm using the state-of-the-art actor-critic algorithm over a set of public bandwidth traces. Simulation results show that the proposed algorithm outperforms the considered baselines in terms of minimizing the expected AoI and the threshold violation of each sensor.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen