Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Remote collaborative knowledge discovery for better understanding of self-tracking data

Tuovinen, Lauri; Smeaton, Alan F. (2019-11-08)

 
Avaa tiedosto
nbnfi-fe202001162359.pdf (379.1Kt)
nbnfi-fe202001162359_meta.xml (30.49Kt)
nbnfi-fe202001162359_solr.xml (27.77Kt)
Lataukset: 

URL:
https://doi.org/10.23919/FRUCT48121.2019.8981506

Tuovinen, Lauri
Smeaton, Alan F.
FRUCT
08.11.2019

Tuovinen, L., Smeaton, A., Remote collaborative knowledge discovery for better understanding of self-tracking data, Proceedings of the FRUCT’25, Helsinki, Finland, 5-8 November 2019, ISSN: 2305-7254, p. 324-332. https://doi.org/10.23919/FRUCT48121.2019.8981506

https://rightsstatements.org/vocab/InC/1.0/
© The Authors 2019.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.23919/FRUCT48121.2019.8981506
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202001162359
Tiivistelmä

Abstract

Wearable self-tracking devices are an increasingly popular way for people to collect information relevant to their own health and well-being, but maximising the benefits derived from such information is hindered by the complexity of analysing it. To gain deeper insights into their own information generated by such products, a user with no data analysis expertise could collaborate with someone who does have the required knowledge and skills. To achieve such a successful collaboration, several tasks need to be completed: finding a collaborator, negotiating the terms of the collaboration, obtaining the necessary resources, analysing the data and evaluating the results of the analysis. To support the execution of these tasks, we have developed and deployed an online software platform that enables data collectors and owners to find experts and collaborate with them so they can extract additional knowledge from the self-tracking data. The functionality and user interface of the platform are demonstrated by presenting an application scenario where a data owner shares their sleep data with an expert who applies periodicity analysis to discover cyclical patterns from the data.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen