Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selective deep features for micro-expression recognition

Patel, Devangini; Hong, Xiaopeng; Zhao, Guoying (2017-04-24)

 
Avaa tiedosto
nbnfi-fe2019080723660.pdf (859.0Kt)
nbnfi-fe2019080723660_meta.xml (29.35Kt)
nbnfi-fe2019080723660_solr.xml (26.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPR.2016.7899972

Patel, Devangini
Hong, Xiaopeng
Zhao, Guoying
Institute of Electrical and Electronics Engineers
24.04.2017

Devangini Patel, X. Hong and G. Zhao, "Selective deep features for micro-expression recognition," 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, 2016, pp. 2258-2263. doi: 10.1109/ICPR.2016.7899972

https://rightsstatements.org/vocab/InC/1.0/
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPR.2016.7899972
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019080723660
Tiivistelmä

Abstract

Micro-expression recognition is a challenging task in computer vision field due to the repressed facial appearance and short duration. Previous work for micro-expression recognition have used hand-crafted features like LBP-TOP, Gabor filter and optical flow. This paper is the first work to explore the possible use of deep learning for micro-expression recognition task. Due to the lack of data for micro-expression, training a CNN model from micro-expression data is not feasible. Instead, transfer learning from objects and facial expressions based CNN models are used. The aim is to use feature selection to remove the irrelevant deep features for our task. This work extends evolutionary algorithms to search an optimal set of deep features so that it does not overfit the training data and generalizes well for the test data. Promising results are presented for various micro-expression datasets.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen