Effect of rolling temperature on microstructure evolution and mechanical properties of AISI316LN austenitic stainless steel
Xiong, Yi; Yue, Yun; He, Tiantian; Lu, Yan; Ren, Fengzhang; Cao, Wei (2018-08-29)
Xiong, Y., Yue, Y., He, T., Lu, Y., Ren, F., Cao, W. (2018) Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel. Materials, 11 (9), 1557. doi:10.3390/ma11091557
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2018092636658
Tiivistelmä
Abstract
The impacts of rolling temperature on phase transformations and mechanical properties were investigated for AISI 316LN austenitic stainless steel subjected to rolling at cryogenic and room temperatures. The microstructure evolution and the mechanical properties were investigated by means of optical, scanning, and transmission electron microscopy, an X-ray diffractometer, microhardness tester, and tensile testing system. Results showed that strain-induced martensitic transformation occurred at both deformation temperatures, and the martensite volume fraction increased with the deformation. Compared with room temperature rolling, cryorolling substantially enhanced the martensite transformation rate. At 50% deformation, it yielded the same fraction as the room temperature counterpart at 90% strain, while at 70%, it totally transformed the austenite to martensite. The strength and hardness of the stainless steel increased remarkably with the deformation, but the corresponding elongation decreased dramatically. Meanwhile, the tensile fracture morphology changed from a typical ductile rupture to a mixture of ductile and quasi-cleavage fracture. The phase transformation and deformation mechanisms differed at two temperatures, with the martensite deformation contributing to the former, and austenite deformation to the latter. Orientations between the transformed martensite and its parent phase followed the K–S (Kurdjumov–Sachs) relationship.
Kokoelmat
- Avoin saatavuus [34545]