Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

ML-Enhanced Indoor Positioning Using Photovoltaic Cells for Light-Based Internet of Things

Perera, Amila; Botirov, Khojiakbar; Katz, Marcos (2025-06-12)

 
Avaa tiedosto
nbnfioulu-202506254955.pdf (4.043Mt)
Lataukset: 

URL:
https://doi.org/10.1109/FNWF63303.2024.11028727

Perera, Amila
Botirov, Khojiakbar
Katz, Marcos
IEEE
12.06.2025

A. Perera, K. Botirov and M. Katz, "ML-Enhanced Indoor Positioning Using Photovoltaic Cells for Light-Based Internet of Things," 2024 IEEE Future Networks World Forum (FNWF), Dubai, United Arab Emirates, 2024, pp. 357-364, doi: 10.1109/FNWF63303.2024.11028727

https://rightsstatements.org/vocab/InC/1.0/
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/fnwf63303.2024.11028727
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202506254955
Tiivistelmä
Abstract

The development of 6G technology is driving the development of sustainable Internet of Things (IoT)-based sensor networks, emphasising low-cost and environmentally friendly solutions. Light-Based IoT (LIoT) emerges as a promising approach, leveraging the unlicensed optical spectrum for energy autonomy through photovoltaic energy harvesting and Visible Light Communication (VLC) via indoor luminaires acting as Optical Access Points (OAPs). This research explores integrating Machine Learning (ML) techniques for indoor positioning within LIoT sensor networks, supporting the intermittent, energy-autonomous operation. We propose an ML-based indoor positioning method that utilises OAPs for data preprocessing and model training, capitalising on existing energy harvesters (EH) for both power generation and position detection. A proof-of-concept LIoT node prototype was developed and tested against conventional supervised ML algorithms. Results demonstrate that these ML models can achieve distance accuracy with error margins within 7 cm and positioning accuracy within 20 cm. This study highlights the design approaches and potential of integrating EH systems with ML-based positioning. By enabling indoor location detection, this integration allows LIoT-based devices to communicate, harvest energy, and acknowledge their position using the same illumination from OAPs.
Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen