Application of machine learning to traffic noise prediction : a case study of Tampere and Oulu
Goncharenko, Danila (2025-06-19)
Goncharenko, Danila
D. Goncharenko
19.06.2025
© 2025 Danila Goncharenko. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202506194827
https://urn.fi/URN:NBN:fi:oulu-202506194827
Tiivistelmä
Although artificial intelligence technology has experienced considerable growth recently, some fields still have unexplored potential. This thesis investigates the application of machine learning techniques to map traffic noise levels using open data, specifically targeting sub-urban areas. The thesis reviews state-of-the-art machine learning approaches in urban computing, with an emphasis on noise prediction methodologies. The work includes comprehensive feature engineering and examines the potential for transfer learning between two Finnish cities. Finally, an open-data-based noise prediction model is developed, and its performance is assessed across various configurations. While the model's generalization presents challenges, the open data and methodological framework established in this thesis create a strong foundation for future research and applications in noise prediction.
Kokoelmat
- Avoin saatavuus [38865]