Secure deployment practices for large language model applications
Lempinen, Mikko (2025-06-12)
Lempinen, Mikko
M. Lempinen
12.06.2025
© 2025 Mikko Lempinen. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202506124420
https://urn.fi/URN:NBN:fi:oulu-202506124420
Tiivistelmä
This thesis identifies security threats associated with deploying LLM-based applications and provides organizations with effective strategies for mitigating these threats while maintaining the functional integrity and utility of their AI systems. In order to achieve this, prior literature has been systematically reviewed, current pressing vulnerabilities affecting LLM applications have been analyzed, and implemented mitigation strategies have been empirically evaluated.
After systematically analyzing previous literature, a handful of mitigation strategies for significant vulnerabilities, applicable for the majority of LLM applications, were selected for further examination. The evaluation results imply that the implemented security measures are highly effective in preventing or mitigating the related vulnerabilities.
After systematically analyzing previous literature, a handful of mitigation strategies for significant vulnerabilities, applicable for the majority of LLM applications, were selected for further examination. The evaluation results imply that the implemented security measures are highly effective in preventing or mitigating the related vulnerabilities.
Kokoelmat
- Avoin saatavuus [38840]