Binding Differences of the Peptide-Substrate-Binding Domain of Collagen Prolyl 4-Hydroxylases I and II for Proline- and Hydroxyproline-Rich Peptides
Rahman, M Mubinur; Sulu, Ramita; Adediran, Bukunmi; Tu, Hongmin; Salo, Antti M; Murthy, Sudarshan; Myllyharju, Johanna; Wierenga, Rik K; Koski, M Kristian (2025-05-19)
Rahman, M Mubinur
Sulu, Ramita
Adediran, Bukunmi
Tu, Hongmin
Salo, Antti M
Murthy, Sudarshan
Myllyharju, Johanna
Wierenga, Rik K
Koski, M Kristian
Wiley-Blackwell
19.05.2025
Rahman, M.M., Sulu, R., Adediran, B., Tu, H., Salo, A.M., Murthy, S., Myllyharju, J., Wierenga, R.K. and Koski, M.K. (2025), Binding Differences of the Peptide-Substrate–Binding Domain of Collagen Prolyl 4-Hydroxylases I and II for Proline- and Hydroxyproline-Rich Peptides. Proteins. https://doi.org/10.1002/prot.26839
https://creativecommons.org/licenses/by/4.0/
© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202505203708
https://urn.fi/URN:NBN:fi:oulu-202505203708
Tiivistelmä
Abstract
Collagen prolyl 4-hydroxylase (C-P4H) catalyzes the 4-hydroxylation of Y-prolines of the XYG-repeat of procollagen. C-P4Hs are tetrameric α2β2 enzymes. The α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate–binding (PSB) domain, and the C-terminal catalytic (CAT) domain. There are three isoforms of the α-subunit, complexed with a β-subunit that is protein disulfide isomerase, forming C-P4H I-III. The PSB domain of the α-subunit binds proline-rich peptides, but its function with respect to the prolyl hydroxylation mechanism is unknown. An extended mode of binding of proline-rich peptides (PPII, polyproline type-II, conformation) to the PSB-I domain has previously been reported for the PPG-PPG-PPG and P9 peptides. Crystal structures now show that peptides with the motif PxGP (PPG-PRG-PPG, PPG-PAG-PPG) (where x, at Y-position 5, is not a proline) bind to the PSB-I domain differently, more deeply, in the peptide-binding groove. The latter mode of binding has previously been reported for structures of the PSB-II domain complexed with these PxGP-peptides. In addition, it is shown here by crystallographic binding studies that the POG-PAG-POG peptide (with 4-hydroxyprolines at Y-positions 2 and 8) also adopts the PxGP mode of binding to PSB-I as well as to PSB-II. Calorimetric binding studies show that the affinities of these peptides are lower for PSB-I than for PSB-II, with, respectively, KD values of about 70 μM for PSB-I and 20 μM for PSB-II. The importance of these results for understanding the reaction mechanism of C-P4H, in particular concerning the function of the PSB domain, is discussed.
Collagen prolyl 4-hydroxylase (C-P4H) catalyzes the 4-hydroxylation of Y-prolines of the XYG-repeat of procollagen. C-P4Hs are tetrameric α2β2 enzymes. The α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate–binding (PSB) domain, and the C-terminal catalytic (CAT) domain. There are three isoforms of the α-subunit, complexed with a β-subunit that is protein disulfide isomerase, forming C-P4H I-III. The PSB domain of the α-subunit binds proline-rich peptides, but its function with respect to the prolyl hydroxylation mechanism is unknown. An extended mode of binding of proline-rich peptides (PPII, polyproline type-II, conformation) to the PSB-I domain has previously been reported for the PPG-PPG-PPG and P9 peptides. Crystal structures now show that peptides with the motif PxGP (PPG-PRG-PPG, PPG-PAG-PPG) (where x, at Y-position 5, is not a proline) bind to the PSB-I domain differently, more deeply, in the peptide-binding groove. The latter mode of binding has previously been reported for structures of the PSB-II domain complexed with these PxGP-peptides. In addition, it is shown here by crystallographic binding studies that the POG-PAG-POG peptide (with 4-hydroxyprolines at Y-positions 2 and 8) also adopts the PxGP mode of binding to PSB-I as well as to PSB-II. Calorimetric binding studies show that the affinities of these peptides are lower for PSB-I than for PSB-II, with, respectively, KD values of about 70 μM for PSB-I and 20 μM for PSB-II. The importance of these results for understanding the reaction mechanism of C-P4H, in particular concerning the function of the PSB domain, is discussed.
Kokoelmat
- Avoin saatavuus [38506]