Using machine learning for predicting the risk of glucose level drop during exercise using continuous glucose monitoring data
Bui, Dai Hieu (2025-05-19)
Bui, Dai Hieu
D. H. Bui
19.05.2025
© 2025 Dai Hieu Bui. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202505193643
https://urn.fi/URN:NBN:fi:oulu-202505193643
Tiivistelmä
Managing blood glucose during intense physical activity remains a critical challenge for individuals with diabetes. This thesis presents a data-driven approach for predicting whether a planned exercise session is likely to lead to a high glucose drop. The prediction is based not only on session characteristics such as duration and intensity but also on contextual and individual-level factors including past activity patterns, continuous glucose monitoring (CGM) data, and patient-specific information such as age and health status. The goal is to support proactive self-management by providing personalized alerts and recommendations before exercise begins.
Kokoelmat
- Avoin saatavuus [38506]