Understanding nationwide open road data in Finland through Digitraffic
Tammia, Henna (2025-05-15)
Tammia, Henna
H. Tammia
15.05.2025
© 2025 Henna Tammia. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202505153479
https://urn.fi/URN:NBN:fi:oulu-202505153479
Tiivistelmä
Travel is no longer only about getting from point A to point B. The safety and comfort of the driver are becoming increasingly important. For route planning, this shift in focus means evermore emphasis is being put on finding the optimal route for each individual user. Personalised route planning requires vast amounts of data that can be hard to acquire, particularly without the use of commercial solutions. This master’s thesis explores the Digitraffic open API, a treasure trove of information about the conditions on Finnish roads. It examines the types of data available through the API and their use in personalised route planning.
The thesis presents a methodology for creating weight vectors from the Digitraffic data. Each of the more than 200 data attributes is meticulously analysed to determine its minimum and maximum values to consider for weight creation. These boundaries do not always correspond with the minimum and maximum observable values that the sensors can report but rather describe the best and worst scenarios for road traffic. To evaluate the system, three user profiles are created. Examining the routes calculated for these users in three different scenarios shows us that the system is able to adapt to differing preferences and give each user a personalised route.
The thesis presents a methodology for creating weight vectors from the Digitraffic data. Each of the more than 200 data attributes is meticulously analysed to determine its minimum and maximum values to consider for weight creation. These boundaries do not always correspond with the minimum and maximum observable values that the sensors can report but rather describe the best and worst scenarios for road traffic. To evaluate the system, three user profiles are created. Examining the routes calculated for these users in three different scenarios shows us that the system is able to adapt to differing preferences and give each user a personalised route.
Kokoelmat
- Avoin saatavuus [38404]