Level sets of prevalent Hölder functions
Anttila, Roope; Barany, Balazs; Käenmäki, Antti (2025-03-03)
Anttila, Roope
Barany, Balazs
Käenmäki, Antti
American mathematical society
03.03.2025
Anttila, R., Bárány, B., & Käenmäki, A. (2025). Level sets of prevalent Hölder functions. Proceedings of the American Mathematical Society 153(5), 2023-2035. https://doi.org/10.1090/proc/17045
https://rightsstatements.org/vocab/InC/1.0/
© 2025 American Mathematical Society
https://rightsstatements.org/vocab/InC/1.0/
© 2025 American Mathematical Society
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202505093206
https://urn.fi/URN:NBN:fi:oulu-202505093206
Tiivistelmä
Abstract
We study the level sets of prevalent Hölder functions. For a prevalent α-Hölder function on the unit interval, we show that the upper Minkowski dimension of every level set is bounded from above by 1−α and Lebesgue positively many level sets have Hausdorff dimension equal to 1 − α.
We study the level sets of prevalent Hölder functions. For a prevalent α-Hölder function on the unit interval, we show that the upper Minkowski dimension of every level set is bounded from above by 1−α and Lebesgue positively many level sets have Hausdorff dimension equal to 1 − α.
Kokoelmat
- Avoin saatavuus [37920]