Midlatitude Neutral Wind Response During the Mother's Day Super-Intense Geomagnetic Storm in 2024 Using Observations From the Chinese Meridian Project
Wang, Xin; Aa, Ercha; Chen, Yanhong; Zhang, Jiaojiao; Zhu, Yajun; Cai, Lei; Lu, Xian; Luo, Bingxian; Liu, Siqing; Li, Ming; Shen, Hua; Yuan, Tianjiao (2025-04-22)
Wang, Xin
Aa, Ercha
Chen, Yanhong
Zhang, Jiaojiao
Zhu, Yajun
Cai, Lei
Lu, Xian
Luo, Bingxian
Liu, Siqing
Li, Ming
Shen, Hua
Yuan, Tianjiao
John Wiley & Sons
22.04.2025
Wang, X., Aa, E., Chen, Y., Zhang, J., Zhu, Y., Cai, L., et al. (2025). Midlatitude neutral wind response during the mother's day super-intense geomagnetic storm in 2024 using observations from the chinese meridian project. Journal of Geophysical Research: Space Physics, 130, e2024JA033574. https://doi.org/10.1029/2024JA033574.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© 2025. The Author(s). This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© 2025. The Author(s). This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202505053066
https://urn.fi/URN:NBN:fi:oulu-202505053066
Tiivistelmä
Abstract
Using new observations from the Chinese Meridian Project (CMP), this study examines the characteristics of neutral winds in the East Asian sector during the Mother's Day super-intense storm in May 2024, primarily focusing on its effects on the disturbances over China and adjacent areas. It is the first time that new measurements from three Dual-Channel Optical Interferometers (DCOIs) are utilized to analyze storm-time neutral winds at an altitude of 250 km in northern China. By developing all northern-hemisphere Super Dual Auroral Radar Network radars including six Chinese Dual Auroral Radar Network (CN-DARN) radars, the newly derived ionospheric convection pattern and its impacts on neutral winds can be well analyzed. The results show that a strong equatorward wind with a maximum amplitude of ∼400 m/s in the meridional component was observed for the first time during the storm main phase. In the East Asian sector, a negative ionospheric storm over China and adjacent areas was accompanied by this enhancement in equatorward wind in the night of May 10. Additionally, ionospheric convection expanded to 43° magnetic latitude (MLAT) with eastward ion velocities exceeding 800 m/s around 50° MLAT. This can strengthen zonal wind in northern China, producing a notable eastward surge of ∼230 m/s measured by new DCOIs in the dawnside sub-auroral region. Wave-like oscillations in neutral winds were observed by multi-DCOI stations, which were associated with the storm-time Traveling Atmospheric Disturbances (TADs). During the storm recovery phase, a high-level total electron content cluster shifted from eastern China to the central regions, which may be attributed to enhanced ∑[O]/[N2].
Using new observations from the Chinese Meridian Project (CMP), this study examines the characteristics of neutral winds in the East Asian sector during the Mother's Day super-intense storm in May 2024, primarily focusing on its effects on the disturbances over China and adjacent areas. It is the first time that new measurements from three Dual-Channel Optical Interferometers (DCOIs) are utilized to analyze storm-time neutral winds at an altitude of 250 km in northern China. By developing all northern-hemisphere Super Dual Auroral Radar Network radars including six Chinese Dual Auroral Radar Network (CN-DARN) radars, the newly derived ionospheric convection pattern and its impacts on neutral winds can be well analyzed. The results show that a strong equatorward wind with a maximum amplitude of ∼400 m/s in the meridional component was observed for the first time during the storm main phase. In the East Asian sector, a negative ionospheric storm over China and adjacent areas was accompanied by this enhancement in equatorward wind in the night of May 10. Additionally, ionospheric convection expanded to 43° magnetic latitude (MLAT) with eastward ion velocities exceeding 800 m/s around 50° MLAT. This can strengthen zonal wind in northern China, producing a notable eastward surge of ∼230 m/s measured by new DCOIs in the dawnside sub-auroral region. Wave-like oscillations in neutral winds were observed by multi-DCOI stations, which were associated with the storm-time Traveling Atmospheric Disturbances (TADs). During the storm recovery phase, a high-level total electron content cluster shifted from eastern China to the central regions, which may be attributed to enhanced ∑[O]/[N2].
Kokoelmat
- Avoin saatavuus [37920]