Navigating fairness: practitioners' understanding, challenges, and strategies in AI/ML development
Pant, Aastha; Hoda, Rashina; Tantithamthavorn, Chakkrit; Turhan, Burak (2025-04-17)
Pant, Aastha
Hoda, Rashina
Tantithamthavorn, Chakkrit
Turhan, Burak
Springer Science+Business Media
17.04.2025
Pant, A., Hoda, R., Tantithamthavorn, C. et al. Navigating fairness: practitioners’ understanding, challenges, and strategies in AI/ML development. Empir Software Eng 30, 102 (2025). https://doi.org/10.1007/s10664-025-10650-0.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202504282937
https://urn.fi/URN:NBN:fi:oulu-202504282937
Tiivistelmä
Abstract
The rise in the use of AI/ML applications across industries has sparked more discussions about the fairness of AI/ML in recent times. While prior research on the fairness of AI/ML exists, there is a lack of empirical studies focused on understanding perspectives and experiences of AI practitioners in developing a fair AI/ML system. Understanding AI practitioners’ perspectives and experiences on the fairness of AI/ML systems is important because they are directly involved in its development and deployment and their insights can offer valuable real-world perspectives on the challenges associated with ensuring fairness in AI/ML systems. We conducted semi-structured interviews with 22 AI practitioners to investigate their understanding of what a ‘fair AI/ML’ is, the challenges they face in developing a fair AI/ML system, the consequences of developing an unfair AI/ML system, and the strategies they employ to ensure AI/ML system fairness. By exploring AI practitioners’ perspectives and experiences, this study provides actionable insights to enhance AI/ML fairness, which may promote fairer systems, reduce bias, and foster public trust in AI technologies. Additionally, we also identify areas for further investigation and offer recommendations to aid AI practitioners and AI companies in navigating fairness.
The rise in the use of AI/ML applications across industries has sparked more discussions about the fairness of AI/ML in recent times. While prior research on the fairness of AI/ML exists, there is a lack of empirical studies focused on understanding perspectives and experiences of AI practitioners in developing a fair AI/ML system. Understanding AI practitioners’ perspectives and experiences on the fairness of AI/ML systems is important because they are directly involved in its development and deployment and their insights can offer valuable real-world perspectives on the challenges associated with ensuring fairness in AI/ML systems. We conducted semi-structured interviews with 22 AI practitioners to investigate their understanding of what a ‘fair AI/ML’ is, the challenges they face in developing a fair AI/ML system, the consequences of developing an unfair AI/ML system, and the strategies they employ to ensure AI/ML system fairness. By exploring AI practitioners’ perspectives and experiences, this study provides actionable insights to enhance AI/ML fairness, which may promote fairer systems, reduce bias, and foster public trust in AI technologies. Additionally, we also identify areas for further investigation and offer recommendations to aid AI practitioners and AI companies in navigating fairness.
Kokoelmat
- Avoin saatavuus [37701]