Soil C-N and microbial community were altered by polybutylene adipate terephthalate microplastics
Yu, Yao; Wang, Yan; Tang, Darrell W. S.; Xue, Sha; Liu, Mengjuan; Geissen, Violette; Yang, Xiaomei (2025-04-18)
Yu, Yao
Wang, Yan
Tang, Darrell W. S.
Xue, Sha
Liu, Mengjuan
Geissen, Violette
Yang, Xiaomei
Elsevier
18.04.2025
Yu, Y., Wang, Y., Tang, D. W. S., Xue, S., Liu, M., Geissen, V., & Yang, X. (2025). Soil C-N and microbial community were altered by polybutylene adipate terephthalate microplastics. Journal of Hazardous Materials, 493, 138328. https://doi.org/10.1016/j.jhazmat.2025.138328.
https://creativecommons.org/licenses/by/4.0/
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202504222803
https://urn.fi/URN:NBN:fi:oulu-202504222803
Tiivistelmä
Abstract
The risks posed by biodegradable plastics to the plant-soil system have been increasingly studied due to potentially hazardous effects on soil properties and nutrient cycling. In this study, we investigated the effects of Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) on soil carbon, nitrogen and microbial communities under different levels of contamination (0 % (control), 0.1 %, 0.2 %, 0.5 % and 1 %), in soils planted with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results showed that PBAT-MPs significantly altered soil dissolved organic carbon, dissolved organic nitrogen and nitrate nitrogen contents, and that these effects varied by plant type and growth stage (p < 0.05). PBAT-MPs significantly increased soil microbial biomass carbon and nitrogen for both plants (p < 0.05), except for microbial biomass nitrogen at the soybean flowering stage. PBAT-MPs altered the β-diversity and composition of bacterial and fungal communities, increasing the relative abundances of Proteobacteria but decreasing the relative abundances of Acidobacteriota for both plants. FAPROTAX analysis showed that PBAT-MPs had significant effects on functional bacterial groups related to the nitrogen and carbon cycle, that varied by plant type and growth stage. These results suggest that biodegradable microplastics may have plant-specific effects on soil microbial communities and microbial metabolism, and thereby influence soil carbon and nitrogen cycling.
The risks posed by biodegradable plastics to the plant-soil system have been increasingly studied due to potentially hazardous effects on soil properties and nutrient cycling. In this study, we investigated the effects of Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) on soil carbon, nitrogen and microbial communities under different levels of contamination (0 % (control), 0.1 %, 0.2 %, 0.5 % and 1 %), in soils planted with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results showed that PBAT-MPs significantly altered soil dissolved organic carbon, dissolved organic nitrogen and nitrate nitrogen contents, and that these effects varied by plant type and growth stage (p < 0.05). PBAT-MPs significantly increased soil microbial biomass carbon and nitrogen for both plants (p < 0.05), except for microbial biomass nitrogen at the soybean flowering stage. PBAT-MPs altered the β-diversity and composition of bacterial and fungal communities, increasing the relative abundances of Proteobacteria but decreasing the relative abundances of Acidobacteriota for both plants. FAPROTAX analysis showed that PBAT-MPs had significant effects on functional bacterial groups related to the nitrogen and carbon cycle, that varied by plant type and growth stage. These results suggest that biodegradable microplastics may have plant-specific effects on soil microbial communities and microbial metabolism, and thereby influence soil carbon and nitrogen cycling.
Kokoelmat
- Avoin saatavuus [37695]