Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intelligible Protocol Learning for Resource Allocation in 6G O-RAN Slicing

Rezazadeh, Farhad; Chergui, Hatim; Siddiqui, Shuaib; Mangues, Josep; Song, Houbing; Saad, Walid; Bennis, Mehdi (2024-10-02)

 
Avaa tiedosto
nbnfioulu-202504142603.pdf (439.6Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MWC.015.2300552

Rezazadeh, Farhad
Chergui, Hatim
Siddiqui, Shuaib
Mangues, Josep
Song, Houbing
Saad, Walid
Bennis, Mehdi
IEEE
02.10.2024

F. Rezazadeh et al., "Intelligible Protocol Learning for Resource Allocation in 6G O-RAN Slicing," in IEEE Wireless Communications, vol. 31, no. 5, pp. 192-199, October 2024, doi: 10.1109/MWC.015.2300552.

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MWC.015.2300552
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202504142603
Tiivistelmä
Abstract

An adaptive standardized protocol is essential for addressing inter-slice resource contention and conflict in network slicing. Traditional protocol standardization is a cumbersome task that yields hardcoded predefined protocols, resulting in increased costs and delayed rollout. Going beyond these limitations, this article proposes a novel multi-agent deep reinforcement learning (MADRL) communication framework called standalone explainable protocol (STEP) for future sixth-generation (6G) open radio access network (O-RAN) slicing. As new conditions arise and affect network operation, resource orchestration agents adapt their communication messages to promote the emergence of a protocol on-the-fly, which enables the mitigation of conflict and resource contention between network slices. STEP weaves together the notion of information bottleneck (IB) theory with deep Q-network (DQN) learning concepts. By incorporating a stochastic bottleneck layer - inspired by variational autoencoders (VAEs) - STEP imposes an information-theoretic constraint for emergent inter-agent communication. This ensures that agents exchange concise and meaningful information, preventing resource waste and enhancing the overall system performance. The learned protocols enhance interpretability, laying a robust foundation for standardizing next-generation 6G networks. By considering an O-RAN compliant network slicing resource allocation problem, a conflict resolution protocol is developed. In particular, the results demonstrate that, on average, STEP reduces inter-slice conflicts by up to 6.06× compared to a predefined protocol method. Furthermore, in comparison with an MADRL baseline, STEP achieves 1.4× and 3.5× lower resource underutilization and latency, respectively.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen