Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Buffered Federated Learning Framework for Privacy-Driven Anomaly Detection in IIoT

Poorazad, Samira Kamali; Benzaïd, Chafika; Taleb, Tarik (2025-03-11)

 
Avaa tiedosto
nbnfioulu-202504012319.pdf (831.0Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM52923.2024.10901786

Poorazad, Samira Kamali
Benzaïd, Chafika
Taleb, Tarik
IEEE
11.03.2025

S. K. Poorazad, C. Benzaïd and T. Taleb, "A Novel Buffered Federated Learning Framework for Privacy-Driven Anomaly Detection in IIoT," GLOBECOM 2024 - 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024, pp. 1725-1730, doi: 10.1109/GLOBECOM52923.2024.10901786

https://rightsstatements.org/vocab/InC/1.0/
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/globecom52923.2024.10901786
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202504012319
Tiivistelmä
Abstract

Industrial Internet of Things (IIoT) is highly sensitive to data privacy and cybersecurity threats. Federated Learning (FL) has emerged as a solution for preserving privacy, enabling private data to remain on local IIoT clients while cooperatively training models to detect network anomalies. However, both synchronous and asynchronous FL architectures exhibit limitations, particularly when dealing with clients with varying speeds due to data heterogeneity and resource constraints. Synchronous architecture suffers from straggler effects, while asynchronous methods encounter communication bottlenecks. Additionally, FL models are prone to adversarial inference attacks aimed at disclosing private training data. To address these challenges, we propose a Buffered FL (BFL) framework empowered by homomorphic encryption for anomaly detection in heterogeneous IIoT environments. BFL utilizes a novel weighted average time approach to mitigate both straggler effects and communication bottlenecks, ensuring fairness between clients with varying processing speeds through collaboration with a buffer-based server. The performance results, derived from two datasets, show the superiority of BFL compared to state-ofthe-art FL methods, demonstrating improved accuracy and convergence speed while enhancing privacy preservation.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen