Link of TMPRSS2 expression with tumor immunogenicity and response to immune checkpoint inhibitors in cancers
Subbarayan, Karthikeyan; Bieber, Helena; Massa, Chiara; Rodríguez, Felipe Adonis Escalona; Hossain, S M Al Amin; Neuder, Lisa; Wahbi, Wafa; Salo, Tuula; Tretbar, Sandy; Al-Samadi, Ahmed; Seliger, Barbara (2025-03-07)
Subbarayan, Karthikeyan
Bieber, Helena
Massa, Chiara
Rodríguez, Felipe Adonis Escalona
Hossain, S M Al Amin
Neuder, Lisa
Wahbi, Wafa
Salo, Tuula
Tretbar, Sandy
Al-Samadi, Ahmed
Seliger, Barbara
Biomed central
07.03.2025
Subbarayan, K., Bieber, H., Massa, C. et al. Link of TMPRSS2 expression with tumor immunogenicity and response to immune checkpoint inhibitors in cancers. J Transl Med 23, 294 (2025). https://doi.org/10.1186/s12967-025-06177-z
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202503111956
https://urn.fi/URN:NBN:fi:oulu-202503111956
Tiivistelmä
Abstract
Background:
SARS-CoV-2 and other viruses rely on the protease function of the TMPRSS2 protein to invade host cells. Despite cancer patients often experience poorer outcomes following SARS-CoV-2 infection, the role of TMPRSS2 in different cancer types has not yet been analyzed in detail. Therefore, the aim of the study was to determine the expression, function and clinical relevance of TMPRSS2 in tumors.
Methods:
Publicly accessible RNA sequencing data from tumors, adjacent tissues and whole blood samples of COVID-19 patients as well as data from human tumor epithelial and endothelial cells infected with SARS-CoV-2 were analyzed for TMPRSS2 expression and correlated to the expression of immune-relevant genes and clinical parameters. In vitro models of cells transfected with TMPRSS2 (TMPRSS2high), siTMPRSS2 or mock controls (TMPRSS2low cells) were analyzed by qPCR, flow cytometry, ELISA and Western blot for the expression of immune response-relevant molecules. Co-cultures of TMPRSS2 model systems with blood peripheral mononuclear cells were employed to evaluate immune cell migration, cytotoxicity and cytokine release.
Results:
Higher expression levels of TMPRSS2 were found in blood from patients infected with SARS-CoV-2, while TMPRSS2 expression levels significantly varied between the tumor types analyzed. TMPRSS2high tumor cells exhibit increased activity of the interferon (IFN) signal pathway accompanied by an increased expression of class I human leukocyte antigens (HLA-I) and programmed cell death ligand 1 (PD-L1) elevated interleukin 6 (IL-6) secretion and reduced NK cell-mediated cytotoxicity compared to TMPRSS2low mock controls. Treatment with a Janus kinase (JAK) 2 inhibitor or TMPRSS2-specific siRNA decreased TMPRSS2 expression. Co-cultures of the in vitro TMPRSS2 models with peripheral blood mononuclear cells in the presence of the immune checkpoint inhibitor nivolumab resulted in a significantly increased migration and infiltration of immune cells towards TMPRSS2high cells and a reduced release of the innate immunity-related cytokines CCL2 and CCL3.
Conclusions:
This study provides novel insights into the role of TMPRSS2 in various tumor systems and the impact of SARS-CoV-2 infection on the host immunogenicity via the activation of immune-relevant pathways. These findings were linked to the efficacy of immune checkpoint inhibitor therapy, offering a potential alternative strategy to mitigate the severity of COVID-19.
Background:
SARS-CoV-2 and other viruses rely on the protease function of the TMPRSS2 protein to invade host cells. Despite cancer patients often experience poorer outcomes following SARS-CoV-2 infection, the role of TMPRSS2 in different cancer types has not yet been analyzed in detail. Therefore, the aim of the study was to determine the expression, function and clinical relevance of TMPRSS2 in tumors.
Methods:
Publicly accessible RNA sequencing data from tumors, adjacent tissues and whole blood samples of COVID-19 patients as well as data from human tumor epithelial and endothelial cells infected with SARS-CoV-2 were analyzed for TMPRSS2 expression and correlated to the expression of immune-relevant genes and clinical parameters. In vitro models of cells transfected with TMPRSS2 (TMPRSS2high), siTMPRSS2 or mock controls (TMPRSS2low cells) were analyzed by qPCR, flow cytometry, ELISA and Western blot for the expression of immune response-relevant molecules. Co-cultures of TMPRSS2 model systems with blood peripheral mononuclear cells were employed to evaluate immune cell migration, cytotoxicity and cytokine release.
Results:
Higher expression levels of TMPRSS2 were found in blood from patients infected with SARS-CoV-2, while TMPRSS2 expression levels significantly varied between the tumor types analyzed. TMPRSS2high tumor cells exhibit increased activity of the interferon (IFN) signal pathway accompanied by an increased expression of class I human leukocyte antigens (HLA-I) and programmed cell death ligand 1 (PD-L1) elevated interleukin 6 (IL-6) secretion and reduced NK cell-mediated cytotoxicity compared to TMPRSS2low mock controls. Treatment with a Janus kinase (JAK) 2 inhibitor or TMPRSS2-specific siRNA decreased TMPRSS2 expression. Co-cultures of the in vitro TMPRSS2 models with peripheral blood mononuclear cells in the presence of the immune checkpoint inhibitor nivolumab resulted in a significantly increased migration and infiltration of immune cells towards TMPRSS2high cells and a reduced release of the innate immunity-related cytokines CCL2 and CCL3.
Conclusions:
This study provides novel insights into the role of TMPRSS2 in various tumor systems and the impact of SARS-CoV-2 infection on the host immunogenicity via the activation of immune-relevant pathways. These findings were linked to the efficacy of immune checkpoint inhibitor therapy, offering a potential alternative strategy to mitigate the severity of COVID-19.
Kokoelmat
- Avoin saatavuus [38865]