Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach
Fallah, Mohammad Amir; Monemi, Mehdi; Rasti, Mehdi; Latva-Aho, Matti (2024-12-18)
Fallah, Mohammad Amir
Monemi, Mehdi
Rasti, Mehdi
Latva-Aho, Matti
IEEE
18.12.2024
M. A. Fallah, M. Monemi, M. Rasti and M. Latva-aho, "Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach," in IEEE Transactions on Mobile Computing, vol. 24, no. 5, pp. 3935-3949, May 2025, doi: 10.1109/TMC.2024.3519382
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202503101929
https://urn.fi/URN:NBN:fi:oulu-202503101929
Tiivistelmä
Abstract
Three-dimensional (3D) spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within a very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely large-scale programmable metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the desired focal point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSI-independent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the phase distribution image (PDI) of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing quasi-liquid layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
Three-dimensional (3D) spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within a very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely large-scale programmable metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the desired focal point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSI-independent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the phase distribution image (PDI) of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing quasi-liquid layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
Kokoelmat
- Avoin saatavuus [38841]