Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

MDANet: Modality-Aware Domain Alignment Network for Visible-Infrared Person Re-Identification

Cheng, Xu; Yu, Hao; Cheng, Kevin Ho Man; Yu, Zitong; Zhao, Guoying (2024-12-24)

 
Avaa tiedosto
nbnfioulu-202503101926.pdf (4.873Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TMM.2024.3521822

Cheng, Xu
Yu, Hao
Cheng, Kevin Ho Man
Yu, Zitong
Zhao, Guoying
IEEE
24.12.2024

X. Cheng, H. Yu, K. H. M. Cheng, Z. Yu and G. Zhao, "MDANet: Modality-Aware Domain Alignment Network for Visible-Infrared Person Re-Identification," in IEEE Transactions on Multimedia, vol. 27, pp. 2015-2027, 2025, doi: 10.1109/TMM.2024.3521822

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TMM.2024.3521822
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202503101926
Tiivistelmä
Abstract

Visible-infrared person re-identification is a challenging task in video surveillance. Most existing works achieve performance gains by aligning feature distributions or image styles across modalities, whereas the multi-granularity information and domain knowledge are usually neglected. Motivated by these issues, we propose a novel modality-aware domain alignment network (MDANet) for visible-infrared person re-identification (VI-ReID), which utilizes global-local context cues and the generalized domain alignment strategy to solve modal differences and poor generalization. Firstly, modality-aware global-local context attention (MGLCA) is proposed to obtain multi-granularity context features and identity-aware patterns. Secondly, we present a generalized domain alignment learning head (GDALH) to relieve the modality discrepancy and enhance the generalization of MDANet, whose core idea is to enrich feature diversity in the domain alignment procedure. Finally, the entire network model is trained by proposing cross-modality circle, classification, and domain alignment losses in an end-to-end fashion. We conduct comprehensive experiments on two standards and their corrupted VI-ReID datasets to validate the robustness and generalization of our approach. MDANet is obviously superior to the most state-of-the-art methods. Specifically, the proposed method can gain 8.86% and 2.50% in Rank-1 accuracy on SYSU-MM01 (all-search and single-shot mode) and RegDB (infrared to visible mode) datasets, respectively. The source code will be made available soon.
Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen