Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zn–Porphyrin Antisolvent Engineering-Enhanced Grain Boundary Passivation for High-Performance Perovskite Solar Cell

Soopy, Abdul Kareem Kalathil; Parida, Bhaskar; Aravindh, S. Assa; SahulHameed, Hiba; Swain, Bhabani Sankar; Saleh, Na'il; Taha, Inas Magdy Abdelrahman; Anjum, Dalaver Hussain; Alberts, Vivian; Liu, Shengzhong; Najar, Adel (2024-03-20)

 
Avaa tiedosto
nbnfioulu-202502241807.pdf (1.369Mt)
Lataukset: 

URL:
https://doi.org/10.1002/solr.202400054

Soopy, Abdul Kareem Kalathil
Parida, Bhaskar
Aravindh, S. Assa
SahulHameed, Hiba
Swain, Bhabani Sankar
Saleh, Na'il
Taha, Inas Magdy Abdelrahman
Anjum, Dalaver Hussain
Alberts, Vivian
Liu, Shengzhong
Najar, Adel
Wiley-VCH Verlag
20.03.2024

Soopy, A.K.K., Parida, B., Aravindh, S.A., SahulHameed, H., Swain, B.S., Saleh, N., Taha, I.M.A., Anjum, D.H., Alberts, V., Liu, S. and Najar, A. (2024), Zn–Porphyrin Antisolvent Engineering-Enhanced Grain Boundary Passivation for High-Performance Perovskite Solar Cell. Sol. RRL, 8: 2400054. https://doi.org/10.1002/solr.202400054

https://rightsstatements.org/vocab/InC/1.0/
© 2024 Wiley-VCH GmbH. This is the peer reviewed version of the following article: Soopy, A.K.K., Parida, B., Aravindh, S.A., SahulHameed, H., Swain, B.S., Saleh, N., Taha, I.M.A., Anjum, D.H., Alberts, V., Liu, S. and Najar, A. (2024), Zn–Porphyrin Antisolvent Engineering-Enhanced Grain Boundary Passivation for High-Performance Perovskite Solar Cell. Sol. RRL, 8: 2400054, which has been published in final form at https://doi.org/10.1002/solr.202400054. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1002/solr.202400054
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502241807
Tiivistelmä
Abstract

Perovskite solar cells (PSCs) represent a promising and rapidly evolving technology in the field of photovoltaics due to their easy fabrication, low-cost materials, and remarkable efficiency improvements over a relatively short period. However, the grain boundaries in the polycrystalline films exhibit a high density of defects, resulting in not only heightened reactivity to oxygen and water but also hampered charge transport and long-term stability. Herein, an approach involving Zn-porphyrin (Zn-PP)-upgraded antisolvent treatment to enhance the grain size and meanwhile passivate grain boundary defects in FA0.95MA0.05PbI2.85Br0.15 perovskites is presented. The Zn-PP molecules significantly improve structural and optical properties, effectively mitigating defects and promoting carrier transport at the perovskite/hole transport layer interface. The density functional theory simulation confirms that Zn-PP forms a strong chemical bonding with the perovskite surface. With Zn-PP passivation, the total density of state shifts to higher-energy regions with molecular adsorption, especially near the valence and conduction band edges, indicating that there is an increase in conducting properties of the surface with molecular adsorption. The power conversion efficiency (PCE) of PSCs increases significantly as a result of this improvement, rising from 15.38% to 19.11%. Moreover, unencapsulated PSCs treated with Zn-PP exhibit outstanding stability, retaining over 91% of their initial PCE.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen