Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering Deliberation Sequences Through Regulatory Triggers in Collaborative Learning

Dang, Belle; Nguyen, Andy; Järvelä, Sanna (2023-09-29)

 
Avaa tiedosto
nbnfioulu-202502101563.pdf (280.0Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICALT58122.2023.00052

Dang, Belle
Nguyen, Andy
Järvelä, Sanna
IEEE
29.09.2023

B. Dang, A. Nguyen and S. Järvelä, "Clustering Deliberation Sequences Through Regulatory Triggers in Collaborative Learning," 2023 IEEE International Conference on Advanced Learning Technologies (ICALT), Orem, UT, USA, 2023, pp. 158-160, doi: 10.1109/ICALT58122.2023.00052.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICALT58122.2023.00052
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502101563
Tiivistelmä
Abstract

Recent advances in Learning Analytics (LA) and Artificial Intelligence (AI) have enabled us to gain a better understanding of socially shared regulation (SSRL), which is in collaborative learning. Although recent progress in studying SSRL with LA and AI has provided holistic insights into the temporal and cyclical processes of SSRL, few studies have investigated SSRL processes at a granular level. To address these limitations, we utilise AI techniques to explore the sequences of group-level deliberation as a process and its pattern through cognitive and emotional regulation triggering events in the context of face-to-face collaborative learning. This study involved ten triads of secondary students (N=30) working on a collaborative learning task and receiving regulation-triggering events during their learning. Results from Agglomerative Hierarchical Clustering (AHC) identified two distinct types of deliberation sequences with different approaches to regulation and collaboration practices: 1) the plan and implementation approach (PIA) focused on analysing, discussing, and collaborating; and 2) the trials and failures approach (TFA) focused on random idea testing. Interestingly, we found that most groups maintain the same approach in response to triggering events, emphasizing the importance of supporting learners to recognize and react to the emerging needs of regulation.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen