Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stacked Intelligent Metasurfaces for Task-Oriented Semantic Communications

Huang, Guojun; An, Jiancheng; Yang, Zhaohui; Gan, Lu; Bennis, Mehdi; Debbah, Merouane (2024-11-18)

 
Avaa tiedosto
nbnfioulu-202502101555.pdf (644.2Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LWC.2024.3499970

Huang, Guojun
An, Jiancheng
Yang, Zhaohui
Gan, Lu
Bennis, Mehdi
Debbah, Merouane
IEEE
18.11.2024

G. Huang, J. An, Z. Yang, L. Gan, M. Bennis and M. Debbah, "Stacked Intelligent Metasurfaces for Task-Oriented Semantic Communications," in IEEE Wireless Communications Letters, vol. 14, no. 2, pp. 310-314, Feb. 2025, doi: 10.1109/LWC.2024.3499970

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/LWC.2024.3499970
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502101555
Tiivistelmä
Abstract

Semantic communication (SemCom) leveraging advanced deep learning (DL) technologies enhances the efficiency and reliability of information transmission. Emerging stacked intelligent metasurface (SIM) with an electromagnetic neural network (EMNN) architecture enables complex computations at the speed of light. In this letter, we introduce an innovative SIM-aided SemCom system for image recognition tasks, where a SIM is positioned in front of the transmitting antenna. In contrast to conventional communication systems that transmit modulated signals carrying the image information or compressed semantic information, the carrier EM wave is directly transmitted from the source. The input layer of the SIM performs source encoding, while the remaining multi-layer architecture constitutes an EMNN for semantic encoding, transforming signals into a unique beam towards a receiving antenna corresponding to the image class. Remarkably, both the source and semantic encoding occur naturally as the EM waves propagate through the SIM. At the receiver, the image is recognized by probing the received signal magnitude across the receiving array. To this end, we utilize an efficient mini-batch gradient descent algorithm to train the transmission coefficients of SIM’s meta-atoms to learn the semantic representation of the image. Extensive numerical results verify the effectiveness of utilizing the SIM-based EMNN for image recognition task-oriented SemComs, achieving more than 90% recognition accuracy.
Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen