Stacked Intelligent Metasurfaces for Task-Oriented Semantic Communications
Huang, Guojun; An, Jiancheng; Yang, Zhaohui; Gan, Lu; Bennis, Mehdi; Debbah, Merouane (2024-11-18)
Huang, Guojun
An, Jiancheng
Yang, Zhaohui
Gan, Lu
Bennis, Mehdi
Debbah, Merouane
IEEE
18.11.2024
G. Huang, J. An, Z. Yang, L. Gan, M. Bennis and M. Debbah, "Stacked Intelligent Metasurfaces for Task-Oriented Semantic Communications," in IEEE Wireless Communications Letters, vol. 14, no. 2, pp. 310-314, Feb. 2025, doi: 10.1109/LWC.2024.3499970
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502101555
https://urn.fi/URN:NBN:fi:oulu-202502101555
Tiivistelmä
Abstract
Semantic communication (SemCom) leveraging advanced deep learning (DL) technologies enhances the efficiency and reliability of information transmission. Emerging stacked intelligent metasurface (SIM) with an electromagnetic neural network (EMNN) architecture enables complex computations at the speed of light. In this letter, we introduce an innovative SIM-aided SemCom system for image recognition tasks, where a SIM is positioned in front of the transmitting antenna. In contrast to conventional communication systems that transmit modulated signals carrying the image information or compressed semantic information, the carrier EM wave is directly transmitted from the source. The input layer of the SIM performs source encoding, while the remaining multi-layer architecture constitutes an EMNN for semantic encoding, transforming signals into a unique beam towards a receiving antenna corresponding to the image class. Remarkably, both the source and semantic encoding occur naturally as the EM waves propagate through the SIM. At the receiver, the image is recognized by probing the received signal magnitude across the receiving array. To this end, we utilize an efficient mini-batch gradient descent algorithm to train the transmission coefficients of SIM’s meta-atoms to learn the semantic representation of the image. Extensive numerical results verify the effectiveness of utilizing the SIM-based EMNN for image recognition task-oriented SemComs, achieving more than 90% recognition accuracy.
Semantic communication (SemCom) leveraging advanced deep learning (DL) technologies enhances the efficiency and reliability of information transmission. Emerging stacked intelligent metasurface (SIM) with an electromagnetic neural network (EMNN) architecture enables complex computations at the speed of light. In this letter, we introduce an innovative SIM-aided SemCom system for image recognition tasks, where a SIM is positioned in front of the transmitting antenna. In contrast to conventional communication systems that transmit modulated signals carrying the image information or compressed semantic information, the carrier EM wave is directly transmitted from the source. The input layer of the SIM performs source encoding, while the remaining multi-layer architecture constitutes an EMNN for semantic encoding, transforming signals into a unique beam towards a receiving antenna corresponding to the image class. Remarkably, both the source and semantic encoding occur naturally as the EM waves propagate through the SIM. At the receiver, the image is recognized by probing the received signal magnitude across the receiving array. To this end, we utilize an efficient mini-batch gradient descent algorithm to train the transmission coefficients of SIM’s meta-atoms to learn the semantic representation of the image. Extensive numerical results verify the effectiveness of utilizing the SIM-based EMNN for image recognition task-oriented SemComs, achieving more than 90% recognition accuracy.
Kokoelmat
- Avoin saatavuus [38821]