Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergent Communication in Multi-Agent Reinforcement Learning for Flying Base Stations

Naoumi, Salmane; Alami, Reda; Hacid, Hakim; Almazrouei, Ebtesam; Debbah, Merouane; Bennis, Mehdi; Chafii, Marwa (2023-10-02)

 
Avaa tiedosto
nbnfioulu-202502061483.pdf (1.041Mt)
Lataukset: 

URL:
https://doi.org/10.1109/MeditCom58224.2023.10266608

Naoumi, Salmane
Alami, Reda
Hacid, Hakim
Almazrouei, Ebtesam
Debbah, Merouane
Bennis, Mehdi
Chafii, Marwa
IEEE
02.10.2023

S. Naoumi et al., "Emergent Communication in Multi-Agent Reinforcement Learning for Flying Base Stations," 2023 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Dubrovnik, Croatia, 2023, pp. 133-138, doi: 10.1109/MeditCom58224.2023.10266608

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MeditCom58224.2023.10266608
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502061483
Tiivistelmä
Abstract

In order to increase network capacity and coverage, flying base stations (FBSs) can be deployed in a variety of scenarios, such as in extremely crowded gatherings or for emergency communication and network access in areas without terrestrial network coverage. Due to their inherent low cost, ease of deployment and high mobility, unmanned aerial vehicles (UAVs) deployed as FBSs can provide cost-effective, fast and reliable network access services to remote ground users. To maximize network capacity, FBSs need to coordinate and exchange information about their observations to optimize their positions, under limited energy and bandwidth resources. In this paper, we investigate the problem of optimizing the positions of FBSs using the framework of emerging communications in multi-agent reinforcement learning (EC-MARL) and we evaluate two EC-MARL architectures, namely Multi-Agent Graph-Attention Communication and Teaming (MAGIC) and Targeted Multi-Agent Communication (TarMAC). We show that coordination between FBSs through learning a communication protocol increases the total achievable rate and coverage of ground users, compared to baselines without communication. Moreover, we consider challenging environments with a large number of FBSs and demonstrate the efficiency of the proposed method in terms of speed of convergence and robustness to the movement of users.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen