In-vivo and ex-vivo evaluation of bio-inspired structures fabricated via PBF-LB for biomedical applications
Araya, Miguel; Järvenpää, Antti; Rautio, Timo; Vindas, Rafael; Estrada, Roberto; de Ruijter, Mylène; Guillén, Teodolito (2025-01-07)
Araya, Miguel
Järvenpää, Antti
Rautio, Timo
Vindas, Rafael
Estrada, Roberto
de Ruijter, Mylène
Guillén, Teodolito
Elsevier
07.01.2025
Miguel Araya, Antti Järvenpää, Timo Rautio, Rafael Vindas, Roberto Estrada, Mylène de Ruijter, Teodolito Guillén, In-vivo and ex-vivo evaluation of bio-inspired structures fabricated via PBF-LB for biomedical applications, Materials Today Bio, Volume 31, 2025, 101450, ISSN 2590-0064, https://doi.org/10.1016/j.mtbio.2025.101450
https://creativecommons.org/licenses/by-nc/4.0/
© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
https://creativecommons.org/licenses/by-nc/4.0/
© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
https://creativecommons.org/licenses/by-nc/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502041458
https://urn.fi/URN:NBN:fi:oulu-202502041458
Tiivistelmä
Abstract
Titanium-based lattice structures have gained significant attention in biomedical engineering due to their potential to mimic bone-like behavior and improve implant performance. This study evaluates the performance of bio-inspired Ti64 TPMS Gyroyd and Stochastic lattice structures fabricated via Powder Bed Fusion-Laser Beam (PBF-LB), focusing on their in-vivo and ex-vivo mechanical and biological responses for biomedical applications. Utilizing an SLM 280 HL printer, samples exhibited notable geometric accuracy essential for mechanical integrity. The study highlights significant mechanical properties and geometric precision improvements achieved through chemical etching. Mechanical characterization revealed that the as-built Gyroid lattice had the highest elastic modulus (3.64 GPa) and yield strength (200.65 MPa), which improved post-etching (3.62 GPa and 219.35 MPa, respectively). The Stochastic lattice demonstrated lower yield strength values post-etching (169.81 MPa). In-vivo analyses in horse models, both structures demonstrated excellent biocompatibility and osseointegration with no adverse inflammatory responses. Ex-vivo push-out tests showed that the chemically etched Gyroid structure achieved the highest resistance to push-out force (1645.407 N) and most significant displacement (2.754 mm), indicating superior energy absorption (4920.425 mJ). These findings underscore the critical influence of microstructural design and surface treatments on implant functionality, offering novel insights into improving biomedical implant performance through lattice architecture and post-processing.
Titanium-based lattice structures have gained significant attention in biomedical engineering due to their potential to mimic bone-like behavior and improve implant performance. This study evaluates the performance of bio-inspired Ti64 TPMS Gyroyd and Stochastic lattice structures fabricated via Powder Bed Fusion-Laser Beam (PBF-LB), focusing on their in-vivo and ex-vivo mechanical and biological responses for biomedical applications. Utilizing an SLM 280 HL printer, samples exhibited notable geometric accuracy essential for mechanical integrity. The study highlights significant mechanical properties and geometric precision improvements achieved through chemical etching. Mechanical characterization revealed that the as-built Gyroid lattice had the highest elastic modulus (3.64 GPa) and yield strength (200.65 MPa), which improved post-etching (3.62 GPa and 219.35 MPa, respectively). The Stochastic lattice demonstrated lower yield strength values post-etching (169.81 MPa). In-vivo analyses in horse models, both structures demonstrated excellent biocompatibility and osseointegration with no adverse inflammatory responses. Ex-vivo push-out tests showed that the chemically etched Gyroid structure achieved the highest resistance to push-out force (1645.407 N) and most significant displacement (2.754 mm), indicating superior energy absorption (4920.425 mJ). These findings underscore the critical influence of microstructural design and surface treatments on implant functionality, offering novel insights into improving biomedical implant performance through lattice architecture and post-processing.
Kokoelmat
- Avoin saatavuus [38821]