A deep learning approach for classifying and predicting children's nutritional status in Ethiopia using LSTM-FC neural networks
Begashaw, Getnet Bogale; Zewotir, Temesgen; Fenta, Haile Mekonnen (2025-01-30)
Begashaw, Getnet Bogale
Zewotir, Temesgen
Fenta, Haile Mekonnen
Biomed central
30.01.2025
Begashaw, G.B., Zewotir, T. & Fenta, H.M. A deep learning approach for classifying and predicting children's nutritional status in Ethiopia using LSTM-FC neural networks. BioData Mining 18, 11 (2025). https://doi.org/10.1186/s13040-025-00425-0
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202502031432
https://urn.fi/URN:NBN:fi:oulu-202502031432
Tiivistelmä
Abstract
Background:
This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016. This paper applies rigorous data preprocessing, including handling missing values, normalization, and balancing, to ensure optimal model performance. Feature selection was performed using SHapley Additive exPlanations to identify key factors influencing nutritional status predictions. Hyperparameter tuning was thoroughly applied during model training to optimize performance. Furthermore, this paper compares the performance of LSTM-FC with existing baseline models to demonstrate its superiority. We used Python's TensorFlow and Keras libraries on a GPU-equipped system for model training.
Results:
LSTM-FC demonstrated superior predictive accuracy and long-term forecasting compared to baseline models for assessing child nutritional status. The classification and prediction performance of the model showed high accuracy rates above 93%, with perfect predictions for Normal (N) and Stunted & Wasted (SW) categories, minimal errors in most other nutritional statuses, and slight over- or underestimations in a few instances. The LSTM-FC model demonstrates strong generalization performance across multiple folds, with high recall and consistent F1-scores, indicating its robustness in predicting nutritional status. We analyzed the prevalence of children’s nutritional status during their transition from late adolescence to early adulthood. The results show a notable decline in normal nutritional status among males, decreasing from 58.3% at age 5 to 33.5% by age 25. At the same time, the risk of severe undernutrition, including conditions of being underweight, stunted, and wasted (USW), increased from 1.3% to 9.4%.
Conclusions:
The LSTM-FC model outperforms baseline methods in classifying and predicting Ethiopian children's nutritional statuses. The findings reveal a critical rise in undernutrition, emphasizing the need for urgent public health interventions.
Background:
This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016. This paper applies rigorous data preprocessing, including handling missing values, normalization, and balancing, to ensure optimal model performance. Feature selection was performed using SHapley Additive exPlanations to identify key factors influencing nutritional status predictions. Hyperparameter tuning was thoroughly applied during model training to optimize performance. Furthermore, this paper compares the performance of LSTM-FC with existing baseline models to demonstrate its superiority. We used Python's TensorFlow and Keras libraries on a GPU-equipped system for model training.
Results:
LSTM-FC demonstrated superior predictive accuracy and long-term forecasting compared to baseline models for assessing child nutritional status. The classification and prediction performance of the model showed high accuracy rates above 93%, with perfect predictions for Normal (N) and Stunted & Wasted (SW) categories, minimal errors in most other nutritional statuses, and slight over- or underestimations in a few instances. The LSTM-FC model demonstrates strong generalization performance across multiple folds, with high recall and consistent F1-scores, indicating its robustness in predicting nutritional status. We analyzed the prevalence of children’s nutritional status during their transition from late adolescence to early adulthood. The results show a notable decline in normal nutritional status among males, decreasing from 58.3% at age 5 to 33.5% by age 25. At the same time, the risk of severe undernutrition, including conditions of being underweight, stunted, and wasted (USW), increased from 1.3% to 9.4%.
Conclusions:
The LSTM-FC model outperforms baseline methods in classifying and predicting Ethiopian children's nutritional statuses. The findings reveal a critical rise in undernutrition, emphasizing the need for urgent public health interventions.
Kokoelmat
- Avoin saatavuus [38840]