Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Sparse Channel Estimator for IRS-Assisted mmWave Hybrid MIMO System

Shukla, Vidya Bhasker; Krejcar, Ondrej; Choi, Kwonhue; Mishra, Ambuj Kumar; Bhatia, Vimal (2024-07-03)

 
Avaa tiedosto
nbnfioulu-202501281370.pdf (1.353Mt)
Lataukset: 

URL:
https://doi.org/10.1109/TCCN.2024.3422510

Shukla, Vidya Bhasker
Krejcar, Ondrej
Choi, Kwonhue
Mishra, Ambuj Kumar
Bhatia, Vimal
IEEE
03.07.2024

V. B. Shukla, O. Krejcar, K. Choi, A. K. Mishra and V. Bhatia, "Adaptive Sparse Channel Estimator for IRS-Assisted mmWave Hybrid MIMO System," in IEEE Transactions on Cognitive Communications and Networking, vol. 10, no. 6, pp. 2224-2235, Dec. 2024, doi: 10.1109/TCCN.2024.3422510.

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCCN.2024.3422510
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501281370
Tiivistelmä
Abstract

A viable technology for the future wireless communication system to obtain extremely high information rates with improved coverage is the collaborative incorporation of an intelligent reflecting surface (IRS) with millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An IRS provides a virtual line-of-sight (LoS) path to enhance the wireless system’s capacity. However, accurate channel state information is essential for the complete utilization of IRS and mmWave MIMO systems. Existing channel estimators based on orthogonal matching pursuit (OMP) and sparse Bayesian learning (SBL) entail large pilot overhead and matrix inversion. Therefore, these techniques offer low spectral efficiency and high computational complexity. To overcome the limitations of existing estimators, we propose an online variable step-size zero-attracting least mean square (VSS-ZALMS) based algorithm for IRS-assisted mmWave hybrid MIMO system channel estimation. Further, we derive analytical expressions for the range of step-size and regularization parameters to improve estimation accuracy and convergence rates. Moreover, we conduct an analysis of IRS location, spectral efficiency, complexity analysis, and pilot overhead requirements. Simulation results are then compared with OMP, SBL, and oracle least square for benchmarking. The results corroborate superiority of the proposed approach concerning accuracy, complexity, and robustness compared to the existing estimators.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen