Adaptive Sparse Channel Estimator for IRS-Assisted mmWave Hybrid MIMO System
Shukla, Vidya Bhasker; Krejcar, Ondrej; Choi, Kwonhue; Mishra, Ambuj Kumar; Bhatia, Vimal (2024-07-03)
Shukla, Vidya Bhasker
Krejcar, Ondrej
Choi, Kwonhue
Mishra, Ambuj Kumar
Bhatia, Vimal
IEEE
03.07.2024
V. B. Shukla, O. Krejcar, K. Choi, A. K. Mishra and V. Bhatia, "Adaptive Sparse Channel Estimator for IRS-Assisted mmWave Hybrid MIMO System," in IEEE Transactions on Cognitive Communications and Networking, vol. 10, no. 6, pp. 2224-2235, Dec. 2024, doi: 10.1109/TCCN.2024.3422510.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501281370
https://urn.fi/URN:NBN:fi:oulu-202501281370
Tiivistelmä
Abstract
A viable technology for the future wireless communication system to obtain extremely high information rates with improved coverage is the collaborative incorporation of an intelligent reflecting surface (IRS) with millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An IRS provides a virtual line-of-sight (LoS) path to enhance the wireless system’s capacity. However, accurate channel state information is essential for the complete utilization of IRS and mmWave MIMO systems. Existing channel estimators based on orthogonal matching pursuit (OMP) and sparse Bayesian learning (SBL) entail large pilot overhead and matrix inversion. Therefore, these techniques offer low spectral efficiency and high computational complexity. To overcome the limitations of existing estimators, we propose an online variable step-size zero-attracting least mean square (VSS-ZALMS) based algorithm for IRS-assisted mmWave hybrid MIMO system channel estimation. Further, we derive analytical expressions for the range of step-size and regularization parameters to improve estimation accuracy and convergence rates. Moreover, we conduct an analysis of IRS location, spectral efficiency, complexity analysis, and pilot overhead requirements. Simulation results are then compared with OMP, SBL, and oracle least square for benchmarking. The results corroborate superiority of the proposed approach concerning accuracy, complexity, and robustness compared to the existing estimators.
A viable technology for the future wireless communication system to obtain extremely high information rates with improved coverage is the collaborative incorporation of an intelligent reflecting surface (IRS) with millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. An IRS provides a virtual line-of-sight (LoS) path to enhance the wireless system’s capacity. However, accurate channel state information is essential for the complete utilization of IRS and mmWave MIMO systems. Existing channel estimators based on orthogonal matching pursuit (OMP) and sparse Bayesian learning (SBL) entail large pilot overhead and matrix inversion. Therefore, these techniques offer low spectral efficiency and high computational complexity. To overcome the limitations of existing estimators, we propose an online variable step-size zero-attracting least mean square (VSS-ZALMS) based algorithm for IRS-assisted mmWave hybrid MIMO system channel estimation. Further, we derive analytical expressions for the range of step-size and regularization parameters to improve estimation accuracy and convergence rates. Moreover, we conduct an analysis of IRS location, spectral efficiency, complexity analysis, and pilot overhead requirements. Simulation results are then compared with OMP, SBL, and oracle least square for benchmarking. The results corroborate superiority of the proposed approach concerning accuracy, complexity, and robustness compared to the existing estimators.
Kokoelmat
- Avoin saatavuus [38865]