Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous Glucose Monitoring in Diabetes Patients: An LSTM-Based Predictive Approach

Meriem, Lefkir; Lamya, Fergani; Mourad, Oussalah (2024-12-12)

 
Avaa tiedosto
nbnfioulu-202501281365.pdf (366.8Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICAEE61760.2024.10783291

Meriem, Lefkir
Lamya, Fergani
Mourad, Oussalah
IEEE
12.12.2024

L. Meriem, F. Lamya and O. Mourad, "Continuous Glucose Monitoring in Diabetes Patients: An LSTM-Based Predictive Approach," 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 2024, pp. 1-6, doi: 10.1109/ICAEE61760.2024.10783291.

https://rightsstatements.org/vocab/InC/1.0/
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICAEE61760.2024.10783291
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501281365
Tiivistelmä
Abstract

Managing blood glucose levels is critically essential in the care of individuals with type 1 diabetes mellitus (T1DM), through appropriate medication, physical activities, and continuous glucose monitoring(CGM). The development of wearable technologies has emerged to monitor glucose continuously and administer insulin when necessary, allowing patients to tracktheir glucose levels easily, with swift intervention, and avoiding hospitalization. This work explores a novel deep-learning model to predict future blood glucose levels at different prediction horizons 5, 15, 30, and 60 minutes. We've proposed a bloodglucose prediction systems based on Long Short Term Memory (LSTM) networks, and we compare its performance to a baseline model (Simple Recurrent Neural Network).Our experimental results on D1NAMO dataset containing CGM data showed that the proposed LSTM model leads to improved blood glucose prediction accuracy measures compared to the baseline model.
Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen