IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity
Ji, Haoyu; Ma, Wenya; Liu, Xu; Chen, Hongyang; Liu, Yining; Ren, Zhongyu; Yin, Daohong; Cai, Ao; Zhang, Zizhen; Wang, Xin; Huang, Wei; Shi, Leping; Tian, Yanan; Yu, Yang; Wang, Xiuxiu; Li, Yang; Liu, Yu; Cai, Benzhi (2025-01-22)
Ji, Haoyu
Ma, Wenya
Liu, Xu
Chen, Hongyang
Liu, Yining
Ren, Zhongyu
Yin, Daohong
Cai, Ao
Zhang, Zizhen
Wang, Xin
Huang, Wei
Shi, Leping
Tian, Yanan
Yu, Yang
Wang, Xiuxiu
Li, Yang
Liu, Yu
Cai, Benzhi
Springer
22.01.2025
Ji, H., Ma, W., Liu, X. et al. IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity. Exp Mol Med 57, 249–263 (2025). https://doi.org/10.1038/s12276-024-01389-7
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501241334
https://urn.fi/URN:NBN:fi:oulu-202501241334
Tiivistelmä
Abstract
Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive. Here we constructed a mouse model of DIC using DOX to investigate potential mechanisms contributing to the differential susceptibility to DIC. Through surface-enhanced Raman spectroscopy and single-cell RNA sequencing, we explored the mechanisms underlying DIC phenotypic variations. In vitro and in vivo studies with small-molecule drugs were conducted. DIC-insensitive mice displayed preserved ejection fractions, lower DOX levels in cardiac tissues and higher levels in the serum. Single-cell RNA sequencing revealed differences of gene expression in cardiac endothelial cells between DIC-insensitive and DIC-sensitive groups. The expression of IFN-γ pathway-related genes was high in DIC-insensitive mice. IFN-γ administration decreased the DOX distribution in cardiac tissues, whereas PPAR-γ activation increased DIC susceptibility. IFN-γ stimulation upregulated P-glycoprotein expression, leading to increased DOX efflux and DIC insensitivity. Our model provides insights into the mechanisms of DIC sensitivity and potential preventive strategies.
Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive. Here we constructed a mouse model of DIC using DOX to investigate potential mechanisms contributing to the differential susceptibility to DIC. Through surface-enhanced Raman spectroscopy and single-cell RNA sequencing, we explored the mechanisms underlying DIC phenotypic variations. In vitro and in vivo studies with small-molecule drugs were conducted. DIC-insensitive mice displayed preserved ejection fractions, lower DOX levels in cardiac tissues and higher levels in the serum. Single-cell RNA sequencing revealed differences of gene expression in cardiac endothelial cells between DIC-insensitive and DIC-sensitive groups. The expression of IFN-γ pathway-related genes was high in DIC-insensitive mice. IFN-γ administration decreased the DOX distribution in cardiac tissues, whereas PPAR-γ activation increased DIC susceptibility. IFN-γ stimulation upregulated P-glycoprotein expression, leading to increased DOX efflux and DIC insensitivity. Our model provides insights into the mechanisms of DIC sensitivity and potential preventive strategies.
Kokoelmat
- Avoin saatavuus [38841]