Timing based clustering of childhood BMI trajectories reveals differential maturational patterns; Study in the Northern Finland Birth Cohorts 1966 and 1986
Heiskala, Anni; Tucker, J Derek; Choudhary, Priyanka; Nedelec, Rozenn; Ronkainen, Justiina; Sarala, Olli; Järvelin, Marjo-Riitta; Sillanpää, Mikko J; Sebert, Sylvain (2025-01-16)
Heiskala, Anni
Tucker, J Derek
Choudhary, Priyanka
Nedelec, Rozenn
Ronkainen, Justiina
Sarala, Olli
Järvelin, Marjo-Riitta
Sillanpää, Mikko J
Sebert, Sylvain
Springer
16.01.2025
Heiskala, A., Tucker, J.D., Choudhary, P. et al. Timing based clustering of childhood BMI trajectories reveals differential maturational patterns; Study in the Northern Finland Birth Cohorts 1966 and 1986. Int J Obes 49, 872–880 (2025). https://doi.org/10.1038/s41366-025-01714-8
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501221297
https://urn.fi/URN:NBN:fi:oulu-202501221297
Tiivistelmä
Abstract
Background/Objectives:
Children’s biological age does not always correspond to their chronological age. In the case of BMI trajectories, this can appear as phase variation, which can be seen as shift, stretch, or shrinking between trajectories. With maturation thought of as a process moving towards the final state - adult BMI, we assessed whether children can be divided into latent groups reflecting similar maturational age of BMI. The groups were characterised by early factors and time-related features of the trajectories.
Subjects/Methods:
We used data from two general population birth cohort studies, Northern Finland Birth Cohorts 1966 and 1986 (NFBC1966 and NFBC1986). Height (n = 6329) and weight (n = 6568) measurements were interpolated in 34 shared time points using B-splines, and BMI values were calculated between 3 months to 16 years. Pairwise phase distances of 2999 females and 3163 males were used as a similarity measure in k-medoids clustering.
Results:
We identified three clusters of trajectories in females and males (Type 1: females, n = 1566, males, n = 1669; Type 2: females, n = 1028, males, n = 973; Type 3: females, n = 405, males, n = 521). Similar distinct timing patterns were identified in males and females. The clusters did not differ by sex, or early growth determinants studied.
Conclusions:
Trajectory cluster Type 1 reflected to the shape of what is typically illustrated as the childhood BMI trajectory in literature. However, the other two have not been identified previously. Type 2 pattern was more common in the NFBC1966 suggesting a generational shift in BMI maturational patterns.
Background/Objectives:
Children’s biological age does not always correspond to their chronological age. In the case of BMI trajectories, this can appear as phase variation, which can be seen as shift, stretch, or shrinking between trajectories. With maturation thought of as a process moving towards the final state - adult BMI, we assessed whether children can be divided into latent groups reflecting similar maturational age of BMI. The groups were characterised by early factors and time-related features of the trajectories.
Subjects/Methods:
We used data from two general population birth cohort studies, Northern Finland Birth Cohorts 1966 and 1986 (NFBC1966 and NFBC1986). Height (n = 6329) and weight (n = 6568) measurements were interpolated in 34 shared time points using B-splines, and BMI values were calculated between 3 months to 16 years. Pairwise phase distances of 2999 females and 3163 males were used as a similarity measure in k-medoids clustering.
Results:
We identified three clusters of trajectories in females and males (Type 1: females, n = 1566, males, n = 1669; Type 2: females, n = 1028, males, n = 973; Type 3: females, n = 405, males, n = 521). Similar distinct timing patterns were identified in males and females. The clusters did not differ by sex, or early growth determinants studied.
Conclusions:
Trajectory cluster Type 1 reflected to the shape of what is typically illustrated as the childhood BMI trajectory in literature. However, the other two have not been identified previously. Type 2 pattern was more common in the NFBC1966 suggesting a generational shift in BMI maturational patterns.
Kokoelmat
- Avoin saatavuus [38840]