Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity
Morgenstern, Olaf; Moss, Rowena; Manning, Martin; Zeng, Guang; Schaefer, Hinrich; Usoskin, Ilya; Turnbull, Jocelyn; Brailsford, Gordon; Nichol, Sylvia; Bromley, Tony (2025-01-02)
Morgenstern, Olaf
Moss, Rowena
Manning, Martin
Zeng, Guang
Schaefer, Hinrich
Usoskin, Ilya
Turnbull, Jocelyn
Brailsford, Gordon
Nichol, Sylvia
Bromley, Tony
Springer
02.01.2025
Morgenstern, O., Moss, R., Manning, M. et al. Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity. Nat Commun 16, 249 (2025). https://doi.org/10.1038/s41467-024-55603-1.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501171223
https://urn.fi/URN:NBN:fi:oulu-202501171223
Tiivistelmä
Abstract
Hydroxyl (OH) is the atmosphere’s main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates. By contrast, radiocarbon monoxide (14CO), produced naturally by cosmic rays and almost exclusively removed by OH, is a tracer with a well-understood source. Here we show that Southern-Hemisphere 14CO measurements indicate increasing OH. New Zealand 14CO data exhibit an annual-mean decrease of 12 ± 2% since 1997, whereas Antarctic measurements show a December-January decrease of 43 ± 24%. Both imply similar OH increases, corroborating our own and other model results suggesting that OH has been globally increasing during recent decades. Model sensitivity simulations illustrate the roles of methane, nitrogen oxides, stratospheric ozone depletion, and global warming driving these trends. They have substantial implications for the budgets of pollutants removed by OH, and especially imply larger than documented methane emission increases.
Hydroxyl (OH) is the atmosphere’s main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates. By contrast, radiocarbon monoxide (14CO), produced naturally by cosmic rays and almost exclusively removed by OH, is a tracer with a well-understood source. Here we show that Southern-Hemisphere 14CO measurements indicate increasing OH. New Zealand 14CO data exhibit an annual-mean decrease of 12 ± 2% since 1997, whereas Antarctic measurements show a December-January decrease of 43 ± 24%. Both imply similar OH increases, corroborating our own and other model results suggesting that OH has been globally increasing during recent decades. Model sensitivity simulations illustrate the roles of methane, nitrogen oxides, stratospheric ozone depletion, and global warming driving these trends. They have substantial implications for the budgets of pollutants removed by OH, and especially imply larger than documented methane emission increases.
Kokoelmat
- Avoin saatavuus [38865]