Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Augmented-LSTM and 1D-CNN-LSTM Models for Linearization of Wideband Power Amplifiers

Rathnayake, Ambagahawela; Silva, Lesthuruge; Rezaei, Hossein; Rajatheva, Nandana (2023-10-31)

 
Avaa tiedosto
nbnfioulu-202501081092.pdf (485.8Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC56721.2023.10294019

Rathnayake, Ambagahawela
Silva, Lesthuruge
Rezaei, Hossein
Rajatheva, Nandana
IEEE
31.10.2023

A. Rathnayake, L. Silva, H. Rezaei and N. Rajatheva, "Augmented-LSTM and 1D-CNN-LSTM Models for Linearization of Wideband Power Amplifiers," 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 2023, pp. 1-6, doi: 10.1109/PIMRC56721.2023.10294019.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC56721.2023.10294019
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501081092
Tiivistelmä
Abstract

Long short-term memory(LSTM) neural networks and convolutional neural networks (CNNs) have been used by modern researchers to compensate power amplifier (PA) distortions. In this research, two digital predistortion (DPD) models based on LSTM and CNN called augmented-LSTM and 1D-CNN-LSTM are proposed. The augmented-LSTM model effectively reduces the distortions in wideband PAs. The measurement results show that the augmented-LSTM model gives better linearization performance compared to other state-of-the-art models designed based on neural networks (NNs). On the other hand, the 1D-CNN-LSTM model is proposed to simplify the augmented-LSTM model by integrating a CNN layer prior the LSTM layer causing reduction in the number of input features to the LSTM layer. The measurement results show that the 1D-CNN-LSTM model offers low-complexity linearization for wideband PAs and provides comparable results to the augmented-LSTM model.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen