Vegetation type is an important predictor of the arctic summer land surface energy budget
Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger; Meloni, Daniela; Domine, Florent; Te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura D; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D (2022-10-31)
Oehri, Jacqueline
Schaepman-Strub, Gabriela
Kim, Jin-Soo
Grysko, Raleigh
Kropp, Heather
Grünberg, Inge
Zemlianskii, Vitalii
Sonnentag, Oliver
Euskirchen, Eugénie S
Reji Chacko, Merin
Muscari, Giovanni
Blanken, Peter D
Dean, Joshua F
di Sarra, Alcide
Harding, Richard J
Sobota, Ireneusz
Kutzbach, Lars
Plekhanova, Elena
Riihelä, Aku
Boike, Julia
Miller, Nathaniel B
Beringer, Jason
López-Blanco, Efrén
Stoy, Paul C
Sullivan, Ryan C
Kejna, Marek
Parmentier, Frans-Jan W
Gamon, John A
Mastepanov, Mikhail
Wille, Christian
Jackowicz-Korczynski, Marcin
Karger, Dirk N
Quinton, William L
Putkonen, Jaakko
van As, Dirk
Christensen, Torben R
Hakuba, Maria Z
Stone, Robert S
Metzger, Stefan
Vandecrux, Baptiste
Frost, Gerald V
Wild, Martin
Hansen, Birger
Meloni, Daniela
Domine, Florent
Te Beest, Mariska
Sachs, Torsten
Kalhori, Aram
Rocha, Adrian V
Williamson, Scott N
Morris, Sara
Atchley, Adam L
Essery, Richard
Runkle, Benjamin R K
Holl, David
Riihimaki, Laura D
Iwata, Hiroki
Schuur, Edward A G
Cox, Christopher J
Grachev, Andrey A
McFadden, Joseph P
Fausto, Robert S
Göckede, Mathias
Ueyama, Masahito
Pirk, Norbert
de Boer, Gijs
Bret-Harte, M Syndonia
Leppäranta, Matti
Steffen, Konrad
Friborg, Thomas
Ohmura, Atsumu
Edgar, Colin W
Olofsson, Johan
Chambers, Scott D
Springer
31.10.2022
Oehri, J., Schaepman-Strub, G., Kim, JS. et al. Vegetation type is an important predictor of the arctic summer land surface energy budget. Nat Commun 13, 6379 (2022). https://doi.org/10.1038/s41467-022-34049-3
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501081084
https://urn.fi/URN:NBN:fi:oulu-202501081084
Tiivistelmä
Abstract
Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
Kokoelmat
- Avoin saatavuus [38840]