Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Road Condition Detection and Crowdsourced Data Collection for Accident Prevention: A Deep Learning Approach

Jahan, Md Saroar; Islam, Mominul; Hossain, Md Sanjid; Kabir Mim, Jhuma; Oussalah, Mourad; Akter, Nasrin (2023-11-21)

 
Avaa tiedosto
nbnfioulu-202501081081.pdf (636.8Kt)
Lataukset: 

URL:
https://doi.org/10.1109/IPTA59101.2023.10320029

Jahan, Md Saroar
Islam, Mominul
Hossain, Md Sanjid
Kabir Mim, Jhuma
Oussalah, Mourad
Akter, Nasrin
IEEE
21.11.2023

M. S. Jahan, M. Islam, M. S. Hossain, J. Kabir Mim, M. Oussalah and N. Akter, "Road Condition Detection and Crowdsourced Data Collection for Accident Prevention: A Deep Learning Approach," 2023 Twelfth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 2023, pp. 1-6, doi: 10.1109/IPTA59101.2023.10320029.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/IPTA59101.2023.10320029
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202501081081
Tiivistelmä
Abstract

Bangladesh is one of the countries struggling to prevent road accidents, which is a global cause for concern. An early warning system that indicates road conditions can contribute to the prevention task. For this purpose, a deep-learning based approach using a Convolutional Neural Network (CNN) to learn from random road images the safety factor is developed. This results in a three-class categorization: (i) Severely risky roads, (ii) Mildly risky roads, and (iii) Normal roads. The application of deep learning techniques in this study yields an accuracy of 95.5% in detecting problematic road conditions. Furthermore, based on the study’s findings, a mobile application has been developed. The app enables real-time crowdsourced data collection of road conditions and provides a platform for users to share this information in real-time with other drivers, thereby, contributing to prevent accidents and raise awareness among drivers and users by pinpointing the location of the risky road. Finally, crowdsourced data has been reused to update the trained model, which further improves the classifier accuracy.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen