Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-Time State Estimation of Hydraulically-Driven Systems Based on Unscented Kalman Filter and Low-Fidelity Models

Khadim, Qasim; Pyrhönen, Lauri; Kurvinen, Emil; Gerstmayr, Johannes; Mikkola, Aki; Orzechowski, Grzegorz (2024-11-13)

 
Avaa tiedosto
nbnfioulu-202412187442.pdf (1.236Mt)
Lataukset: 

URL:
https://doi.org/10.1115/DETC2024-144017

Khadim, Qasim
Pyrhönen, Lauri
Kurvinen, Emil
Gerstmayr, Johannes
Mikkola, Aki
Orzechowski, Grzegorz
American Society of Mechanical Engineers
13.11.2024

Khadim, Q., Pyrhönen, L., Kurvinen, E., Gerstmayr, J., Mikkola, A., & Orzechowski, G. (2024). Real-time state estimation of hydraulically-driven systems based on unscented Kalman Filter and low-fidelity models. Volume 9: 20th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), V009T09A006. https://doi.org/10.1115/DETC2024-144017

https://rightsstatements.org/vocab/InC/1.0/
Copyright © 2024 by ASME.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1115/DETC2024-144017
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412187442
Tiivistelmä
Abstract

The algorithms identifying machine health and predicting maintenance needs require accurate information about the machine’s state. Because of the great amount of collected data and limited data buffering and data transfer capabilities in many hydraulic machinery applications, the data should be processed in real time. The real-time requirement demands computationally efficient simulation models, while the self-correcting nature of estimation algorithms allows models with lower precision to be used.

The study combines the novel low-fidelity surrogate models with an Unscented Kalman Filter (UKF) for the real-time state estimation of the coupled mechanical systems. The surrogate-assisted modeling approach reduces the model complexity and improves computational efficiency while maintaining high accuracy. A hydraulic forestry crane case study is investigated, and the computational efficiency and numerical accuracy of the developed observers are evaluated. The encoder measurements are provided by the high-fidelity model. The high-fidelity model introduces imperfections in the form of the frictional forces in the hydraulic cylinders, which induce approximately 2 % error in actuated force. The case study results demonstrate that the surrogate-based state observer delivers estimations within the real-time computational range. It shows a maximum accuracy deviation of 7.31 % for unmeasured states compared to the high-fidelity model-based observer.
Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen