Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches

Tanyu, Derick Nganyu; Ning, Jianfeng; Hauptmann, Andreas; Jin, Bangti; Maass, Peter

 
Avaa tiedosto
nbnfioulu-202412187415.pdf (3.984Mt)
Lataukset: 

URL:
https://doi.org/10.1515/9783111251233-013

Tanyu, Derick Nganyu
Ning, Jianfeng
Hauptmann, Andreas
Jin, Bangti
Maass, Peter
De Gruyter

Tanyu, D., Ning, J., Hauptmann, A., Jin, B. & Maass, P. (2025). Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches. In T. Bubba (Ed.), Data-driven Models in Inverse Problems (pp. 437-470). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783111251233-013

https://rightsstatements.org/vocab/InC/1.0/
© 2024 Walter de Gruyter GmbH, Berlin/Boston. All Rights Reserved.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1515/9783111251233-013
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412187415
Tiivistelmä
Abstract

Electrical impedance tomography (EIT) is a powerful imaging technique with diverse applications, e. g., medical diagnosis, industrial monitoring, and environmental studies. The EIT inverse problem is about inferring the internal conductivity distribution of an object from measurements taken on its boundary. It is severely ill-posed, necessitating advanced computational methods for accurate image reconstructions. Recent years have witnessed significant progress, driven by innovations in analytic-based approaches and deep learning. This review comprehensively explores techniques for solving the EIT inverse problem, focusing on the interplay between contemporary deep learning-based strategies and classical analytic-based methods. Four state of the art deep learning algorithms are rigorously examined, including the deep D-bar method, deep direct sampling method, fully connected U-net, and convolutional neural networks, harnessing the representational capabilities of deep neural networks to reconstruct intricate conductivity distributions. In parallel, two analytic-based methods, i. e., sparsity regularization and the D-bar method, rooted in mathematical formulations and regularization techniques, are dissected for their strengths and limitations. These methodologies are evaluated through an extensive array of numerical experiments, encompassing diverse scenarios that reflect real-world complexities. A suite of performance metrics is employed to assess the efficacy of these methods. These metrics collectively provide a nuanced understanding of the methods’ ability to capture essential features and delineate complex conductivity patterns. One novel feature of the study is the incorporation of variable conductivity scenarios, introducing a level of heterogeneity that mimics textured inclusions. This departure from uniform conductivity assumptions mimics realistic scenarios, where tissues or materials exhibit spatially varying electrical properties. Exploring how each method responds to such variable conductivity scenarios opens avenues for understanding their robustness and adaptability.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen