Monocular depth estimation on embedded devices
Pirttiaho, Niko (2024-12-17)
Pirttiaho, Niko
N. Pirttiaho
17.12.2024
© 2024 Niko Pirttiaho. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412177353
https://urn.fi/URN:NBN:fi:oulu-202412177353
Tiivistelmä
In this work, a lightweight monocular depth estimation network capable of running on hardware with limited resources was developed. The network produces dense depth maps in indoor environments from low resolution images captured by a single camera. The network utilizes an encoder-decoder based architecture with skip connections. A modified MobileNetV2 was used as the encoder, and the decoder comprised upsampling layers, skip-connection layers and convolutional layers. The network was trained for indoor use cases using NYU Depth V2 dataset and for outdoor use cases using KITTI dataset using a loss function which utilizes structural similarity. The model's parameters were fully quantized to 8 bits from the original 32 bits to further reduce memory requirements. The network was tested using OPENMV H7 microcontroller board and was successfully able to produce depth maps from images captured by the board's camera in real-time.
Kokoelmat
- Avoin saatavuus [38824]