Physical simulation-based analysis of multipass welding in S500 shipbuilding steel
Gáspár, Marcell; Kovács, Judit; Sainio, Johannes; Tervo, Henri; Javaheri, Vahid; Kaijalainen, Antti (2024-12-14)
Gáspár, Marcell
Kovács, Judit
Sainio, Johannes
Tervo, Henri
Javaheri, Vahid
Kaijalainen, Antti
Springer
14.12.2024
Gáspár, M., Kovács, J., Sainio, J. et al. Physical simulation-based analysis of multipass welding in S500 shipbuilding steel. Weld World 69, 825–836 (2025). https://doi.org/10.1007/s40194-024-01908-0
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412167299
https://urn.fi/URN:NBN:fi:oulu-202412167299
Tiivistelmä
Abstract
Novel generations of shipbuilding steels have outstanding toughness due to the improved steel producing processes. Their microstructure mainly consists of ferrite and bainite, while the presence of acicular ferrite has a role in high impact energy of the welded joint. This research aims to analyze the effect of multipass welding on weld characteristics of S500 shipbuilding steel. A Gleeble 3500 simulator machine is used to produce the welding thermal cycles by the Rykalin-3D model on 70 × 10 × 10 mm samples manufactured in transversal direction from a submerged arc welded joint of 16 mm plate. Temperatures for the simulations were set at 1350 °C for the coarse-grained zone forming in the weld metal (CGHAZ-W), 815 °C for the intercritical zone (ICHAZ-W), and a combination of these peak temperatures for the intercritically reheated coarse-grained zone (ICCGHAZ-W). The examined t 8/5 interval was 5–30 s. The weld properties were examined by microstructural exami- nation, hardness test, and instrumented Charpy V-notch impact toughness test. The impact energy values of subzones were below the unaffected weld metal. Longer cooling time resulted in lower impact energy in ICHAZ-W. However, this tendency was not observed in CGHAZ-W. ICHAZ-W and ICCGHAZ-W resulted in the lowest impact toughness, which was indicated by the large unstable crack propagation.
Novel generations of shipbuilding steels have outstanding toughness due to the improved steel producing processes. Their microstructure mainly consists of ferrite and bainite, while the presence of acicular ferrite has a role in high impact energy of the welded joint. This research aims to analyze the effect of multipass welding on weld characteristics of S500 shipbuilding steel. A Gleeble 3500 simulator machine is used to produce the welding thermal cycles by the Rykalin-3D model on 70 × 10 × 10 mm samples manufactured in transversal direction from a submerged arc welded joint of 16 mm plate. Temperatures for the simulations were set at 1350 °C for the coarse-grained zone forming in the weld metal (CGHAZ-W), 815 °C for the intercritical zone (ICHAZ-W), and a combination of these peak temperatures for the intercritically reheated coarse-grained zone (ICCGHAZ-W). The examined t 8/5 interval was 5–30 s. The weld properties were examined by microstructural exami- nation, hardness test, and instrumented Charpy V-notch impact toughness test. The impact energy values of subzones were below the unaffected weld metal. Longer cooling time resulted in lower impact energy in ICHAZ-W. However, this tendency was not observed in CGHAZ-W. ICHAZ-W and ICCGHAZ-W resulted in the lowest impact toughness, which was indicated by the large unstable crack propagation.
Kokoelmat
- Avoin saatavuus [38840]