Using machine learning to predict road weather conditions
Rantala, Lotta (2024-12-12)
Rantala, Lotta
L. Rantala
12.12.2024
© 2024 Lotta Rantala. Ellei toisin mainita, uudelleenkäyttö on sallittu Creative Commons Attribution 4.0 International (CC-BY 4.0) -lisenssillä (https://creativecommons.org/licenses/by/4.0/). Uudelleenkäyttö on sallittua edellyttäen, että lähde mainitaan asianmukaisesti ja mahdolliset muutokset merkitään. Sellaisten osien käyttö tai jäljentäminen, jotka eivät ole tekijän tai tekijöiden omaisuutta, saattaa edellyttää lupaa suoraan asianomaisilta oikeudenhaltijoilta.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412127254
https://urn.fi/URN:NBN:fi:oulu-202412127254
Tiivistelmä
This thesis reviews two different machine learning models in the prediction of road weather conditions. An empirical dataset covering a five-year period was collected from five road weather stations, and based on correlation analysis, seven variables were chosen to be used as the input of the linear regression model and neural network model, whereas road surface and ground temperatures were used as response variables. The models were trained using data from three of the five stations, and the prediction was done for the other two stations. The results indicate a similarity in predictions between both models, and there was no significant advantage of one model over the other. However, the models gave promising results.
Kokoelmat
- Avoin saatavuus [38840]