Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation

Ding, Ziyuan; Liang, Yixiong; Kan, Shichao; Liu, Qing (2024-10-03)

 
Avaa tiedosto
nbnfioulu-202412057077.pdf (2.171Mt)
Huom!
Sisältö avataan julkiseksi
: 03.10.2025
URL:
https://doi.org/10.1007/978-3-031-72114-4_32

Ding, Ziyuan
Liang, Yixiong
Kan, Shichao
Liu, Qing
Springer
03.10.2024

Ding, Z., Liang, Y., Kan, S., Liu, Q. (2024). HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_32

https://rightsstatements.org/vocab/InC/1.0/
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG. This is a post-peer-review, pre-copyedit version of an article published in Medical Image Computing and Computer Assisted Intervention – MICCAI 2024: 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part IX. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-72114-4_32
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-031-72114-4_32
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202412057077
Tiivistelmä
Abstract

High resolution is crucial for precise segmentation in fundus images, yet handling high-resolution inputs incurs considerable GPU memory costs, with diminishing performance gains as overhead increases. To address this issue while tackling the challenge of segmenting tiny objects, recent studies have explored local-global feature fusion methods. These methods preserve fine details using local regions and capture context information from downscaled global images. However, the necessity of multiple forward passes inevitably incurs significant computational overhead, greatly affecting inference speed. In this paper, we propose HRDecoder, a simple High-Resolution Decoder network for fundus image segmentation. It integrates a High-resolution Representation Learning (HRL) module to capture fine-grained local features and a High-resolution Feature Fusion (HFF) module to fuse multi-scale local-global feature maps. HRDecoder effectively improves the overall segmentation accuracy of fundus lesions while maintaining reasonable memory usage, computational overhead, and inference speed. Experimental results on the IDRID and DDR datasets demonstrate the effectiveness of our method. The code is available at https://github.com/CVIU-CSU/HRDecoder.
Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen