Postmortem analyses of myocardial microRNA expression in sepsis
Lehto, Pasi; Skarp, Sini; Saukko, Taru; Säkkinen, Hanna; Syrjälä, Hannu; Kerkelä, Risto; Saarimäki, Samu; Bläuer, Sonja; Porvari, Katja; Pakanen, Lasse; Karhu, Jaana; Ala-Kokko, Tero (2024-11-27)
Lehto, Pasi
Skarp, Sini
Saukko, Taru
Säkkinen, Hanna
Syrjälä, Hannu
Kerkelä, Risto
Saarimäki, Samu
Bläuer, Sonja
Porvari, Katja
Pakanen, Lasse
Karhu, Jaana
Ala-Kokko, Tero
Springer
27.11.2024
Lehto, P., Skarp, S., Saukko, T. et al. Postmortem analyses of myocardial microRNA expression in sepsis. Sci Rep 14, 29476 (2024). https://doi.org/10.1038/s41598-024-81114-6
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202411296978
https://urn.fi/URN:NBN:fi:oulu-202411296978
Tiivistelmä
Abstract
Background:
Sepsis can lead to myocardial depression, playing a significant role in sepsis pathophysiology, clinical care, and outcome. To gain more insight into the pathophysiology of the myocardial response in sepsis, we investigated the expression of microRNA in myocardial autopsy specimens in critically ill deceased with sepsis and non-septic controls.
Materials and methods:
In this retrospective observational study, we obtained myocardial tissue samples collected during autopsy from adult patients deceased with sepsis (n = 15) for routine histological examination. We obtained control myocardial tissue specimens (n = 15) from medicolegal autopsies of cadavers whose cause of death was injury or who were found dead at home and the cause of death was coronary artery disease with sudden cardiac arrest. RNA was isolated from formalin-fixed paraffin- embedded (FFPE) cardiac samples using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen). Differentially expressed miRNAs were identified using edgeR v3.32. MicroRNA was considered up- or down-regulated if the false discovery rate was < 0.05 and logarithmic fold change (log2FC) ≥ 1 for up-regulated or log2FC ≤ -1 for down-regulated miRNAs. The mean difference and 95% confidence interval (CI) were calculated for normalized read counts. Predicted miRNA targets were retrieved using Ingenuity Pathway Analysis (IPA) software, and pathway enrichment and classification were performed using PantherDB. For miRNA – mRNA interaction analysis, differentially expressed genes were analyzed by 3`mRNA sequencing.
Results:
Differential expression analysis identified a total of 32 miRNAs in the myocardial specimens. Eight miRNAs had a significant change in the mean difference based on the 95% CI, with the largest increase in mean counts in septic samples with hsa-miR-12136 and the highest fold change with hsa-miR-146b-5p. The threshold for down-regulated miRNAs in sepsis compared to controls was obtained with hsa-miR-144-5p and hsa-miR-451a, with the latter having the largest decrease in mean counts and fold decrease. The miRNA – mRNA interaction analysis identified eight miRNAs with target genes also differentially expressed in septic hearts. The highest number of potential targets were identified for hsa-miR-363-3p.
Conclusions:
Several regulatory miRNAs were up-or down-regulated in the myocardial tissue of patients deceased with sepsis compared to non-septic subjects. The predicted target genes of miRNAs and miRNA-mRNA interaction analysis are associated with biological functions related to cardiovascular functions, cell viability, cell adhesion, and regulation of inflammatory and immune response.
Background:
Sepsis can lead to myocardial depression, playing a significant role in sepsis pathophysiology, clinical care, and outcome. To gain more insight into the pathophysiology of the myocardial response in sepsis, we investigated the expression of microRNA in myocardial autopsy specimens in critically ill deceased with sepsis and non-septic controls.
Materials and methods:
In this retrospective observational study, we obtained myocardial tissue samples collected during autopsy from adult patients deceased with sepsis (n = 15) for routine histological examination. We obtained control myocardial tissue specimens (n = 15) from medicolegal autopsies of cadavers whose cause of death was injury or who were found dead at home and the cause of death was coronary artery disease with sudden cardiac arrest. RNA was isolated from formalin-fixed paraffin- embedded (FFPE) cardiac samples using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen). Differentially expressed miRNAs were identified using edgeR v3.32. MicroRNA was considered up- or down-regulated if the false discovery rate was < 0.05 and logarithmic fold change (log2FC) ≥ 1 for up-regulated or log2FC ≤ -1 for down-regulated miRNAs. The mean difference and 95% confidence interval (CI) were calculated for normalized read counts. Predicted miRNA targets were retrieved using Ingenuity Pathway Analysis (IPA) software, and pathway enrichment and classification were performed using PantherDB. For miRNA – mRNA interaction analysis, differentially expressed genes were analyzed by 3`mRNA sequencing.
Results:
Differential expression analysis identified a total of 32 miRNAs in the myocardial specimens. Eight miRNAs had a significant change in the mean difference based on the 95% CI, with the largest increase in mean counts in septic samples with hsa-miR-12136 and the highest fold change with hsa-miR-146b-5p. The threshold for down-regulated miRNAs in sepsis compared to controls was obtained with hsa-miR-144-5p and hsa-miR-451a, with the latter having the largest decrease in mean counts and fold decrease. The miRNA – mRNA interaction analysis identified eight miRNAs with target genes also differentially expressed in septic hearts. The highest number of potential targets were identified for hsa-miR-363-3p.
Conclusions:
Several regulatory miRNAs were up-or down-regulated in the myocardial tissue of patients deceased with sepsis compared to non-septic subjects. The predicted target genes of miRNAs and miRNA-mRNA interaction analysis are associated with biological functions related to cardiovascular functions, cell viability, cell adhesion, and regulation of inflammatory and immune response.
Kokoelmat
- Avoin saatavuus [35371]