Dynamic semantic networks for exploration of creative thinking
Georgiev, Danko D.; Georgiev, Georgi V. (2024-11-12)
Georgiev, Danko D.
Georgiev, Georgi V.
Cambridge University Press
12.11.2024
Georgiev DD and Georgiev GV (2024). Dynamic semantic networks for exploration of creative thinking. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 38, e12, 1–15. https://doi.org/10.1017/S0890060424000180
https://creativecommons.org/licenses/by/4.0/
© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
https://creativecommons.org/licenses/by/4.0/
© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202411256891
https://urn.fi/URN:NBN:fi:oulu-202411256891
Tiivistelmä
Abstract
Human creativity originates from brain cortical networks that are specialized in idea generation, processing, and evaluation. The concurrent verbalization of our inner thoughts during the execution of a design task enables the use of dynamic semantic networks as a tool for investigating, evaluating, and monitoring creative thought. The primary advantage of using lexical databases such as WordNet for reproducible information-theoretic quantification of convergence or divergence of design ideas in creative problem solving is the simultaneous handling of both words and meanings, which enables interpretation of the constructed dynamic semantic networks in terms of underlying functionally active brain cortical regions involved in concept comprehension and production. In this study, the quantitative dynamics of semantic measures computed with a moving time window is investigated empirically in the DTRS10 dataset with design review conversations and detected divergent thinking is shown to predict success of design ideas. Thus, dynamic semantic networks present an opportunity for real-time computer-assisted detection of critical events during creative problem solving, with the goal of employing this knowledge to artificially augment human creativity.
Human creativity originates from brain cortical networks that are specialized in idea generation, processing, and evaluation. The concurrent verbalization of our inner thoughts during the execution of a design task enables the use of dynamic semantic networks as a tool for investigating, evaluating, and monitoring creative thought. The primary advantage of using lexical databases such as WordNet for reproducible information-theoretic quantification of convergence or divergence of design ideas in creative problem solving is the simultaneous handling of both words and meanings, which enables interpretation of the constructed dynamic semantic networks in terms of underlying functionally active brain cortical regions involved in concept comprehension and production. In this study, the quantitative dynamics of semantic measures computed with a moving time window is investigated empirically in the DTRS10 dataset with design review conversations and detected divergent thinking is shown to predict success of design ideas. Thus, dynamic semantic networks present an opportunity for real-time computer-assisted detection of critical events during creative problem solving, with the goal of employing this knowledge to artificially augment human creativity.
Kokoelmat
- Avoin saatavuus [38840]