Atmospheric icing meteorological parameter study using field experiments and simulation
Han, Xingbo; Virk, Muhammad; Asif, Hamza; Mäkynen, Anssi; Juttula, Harri; Molkoselkä, Eero; Kaikkonen, Ville A. (2024-11-12)
Han, Xingbo
Virk, Muhammad
Asif, Hamza
Mäkynen, Anssi
Juttula, Harri
Molkoselkä, Eero
Kaikkonen, Ville A.
Royal meteorological society
12.11.2024
Han, X., Virk, M., Asif, H., Mäkynen, A., Juttula, H., Molkoselkä, E., & Kaikkonen, V. A. (2024). Atmospheric icing meteorological parameter study using field experiments and simulation. Meteorological Applications, 31(6), e70013. https://doi.org/10.1002/met.70013
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Meteorological Applications published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
© 2024 The Author(s). Meteorological Applications published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202411216845
https://urn.fi/URN:NBN:fi:oulu-202411216845
Tiivistelmä
Abstract
Atmospheric icing on ground structures is a concern from design, operation, and safety perspectives. Supercooled water droplets size and liquid water content (LWC) are important weather parameters to better understand the ice accretion physics on ground structures. Most existing studies are based on measurements at high altitude. The study is based on the field results of a specific event (from 9:30 to 22:27 h on October 29, 2022) in Arctic region of northern Norway. The data from this event are presented and used for analytical validation and simulation. Field measurements of different meteorological weather parameters including the droplet size and LWC are carried out leading to recording of resultant atmospheric ice load and intensity. A comprehensive study is also carried out to validate droplet collision efficiency and ice load using the existing analytical model ISO-12494 and computational fluid dynamics (CFD)–based numerical simulations. Furthermore, the differences in icing simulation using parameters such as median volume diameter (MVD), Langmuir B –J as alternatives to the actual droplet size distribution (DSD) spectrum are also analyzed. The results show that under natural meteorological conditions, the characteristics of water DSD change in real time. Using MVD alone to calculate the water droplet collision efficiency on circular cylinders can lead to significant errors. Accurately selecting the Langmuir distribution as a substitute for the actual DSD can reduce simulation errors to within 5%. Compared to the analytical model, the numerical simulations result better reflects the collision characteristics of water droplets of different sizes on the cylindrical object.
Atmospheric icing on ground structures is a concern from design, operation, and safety perspectives. Supercooled water droplets size and liquid water content (LWC) are important weather parameters to better understand the ice accretion physics on ground structures. Most existing studies are based on measurements at high altitude. The study is based on the field results of a specific event (from 9:30 to 22:27 h on October 29, 2022) in Arctic region of northern Norway. The data from this event are presented and used for analytical validation and simulation. Field measurements of different meteorological weather parameters including the droplet size and LWC are carried out leading to recording of resultant atmospheric ice load and intensity. A comprehensive study is also carried out to validate droplet collision efficiency and ice load using the existing analytical model ISO-12494 and computational fluid dynamics (CFD)–based numerical simulations. Furthermore, the differences in icing simulation using parameters such as median volume diameter (MVD), Langmuir B –J as alternatives to the actual droplet size distribution (DSD) spectrum are also analyzed. The results show that under natural meteorological conditions, the characteristics of water DSD change in real time. Using MVD alone to calculate the water droplet collision efficiency on circular cylinders can lead to significant errors. Accurately selecting the Langmuir distribution as a substitute for the actual DSD can reduce simulation errors to within 5%. Compared to the analytical model, the numerical simulations result better reflects the collision characteristics of water droplets of different sizes on the cylindrical object.
Kokoelmat
- Avoin saatavuus [38865]