A multi-criteria approach for improving streamflow prediction in a rapidly urbanizing data scarce catchment
Panchanathan, Anandharuban; Torabi Haghighi, Ali; Oussalah, Mourad (2023-03-17)
Panchanathan, Anandharuban
Torabi Haghighi, Ali
Oussalah, Mourad
Taylor & Francis
17.03.2023
Panchanathan, A., Torabi Haghighi, A., & Oussalah, M. (2023). A multi-criteria approach for improving streamflow prediction in a rapidly urbanizing data scarce catchment. International Journal of River Basin Management, 22(4), 515–528. https://doi.org/10.1080/15715124.2023.2188597
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
https://creativecommons.org/licenses/by/4.0/
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-2023040334554
https://urn.fi/URN:NBN:fi:oulu-2023040334554
Tiivistelmä
Abstract
This study advocates a multi-criteria approach to improve the streamflow predictions in a data-scarce catchment of Chennai metropolitan city of India using the Soil Water and Assessment Tool (SWAT). The remotely sensed evapotranspiration (ET) data, groundwater recharge estimation, and parameter regionalization were used to improve model prediction. Dynamic change of Land Use and Land Cover (LULC) was accounted for along with multi-parameter calibration for reducing the uncertainty in model parameters. The results revealed an improved streamflow prediction accuracy by 10%, especially in the prediction of medium and high flows with the Nash-Sutcliffe efficiency of 0.60. The enhanced parameters were regionalized to ungauged sub-basins and validated using a measured flow event downstream of regionalization with 15% prediction uncertainty. This semi-arid catchment is dominated by ET (58%) and runoff (27%) in the region's hydrology. The finding of this study can be applied to improve the hydrological modelling and predictions in data-scarce regions.
This study advocates a multi-criteria approach to improve the streamflow predictions in a data-scarce catchment of Chennai metropolitan city of India using the Soil Water and Assessment Tool (SWAT). The remotely sensed evapotranspiration (ET) data, groundwater recharge estimation, and parameter regionalization were used to improve model prediction. Dynamic change of Land Use and Land Cover (LULC) was accounted for along with multi-parameter calibration for reducing the uncertainty in model parameters. The results revealed an improved streamflow prediction accuracy by 10%, especially in the prediction of medium and high flows with the Nash-Sutcliffe efficiency of 0.60. The enhanced parameters were regionalized to ungauged sub-basins and validated using a measured flow event downstream of regionalization with 15% prediction uncertainty. This semi-arid catchment is dominated by ET (58%) and runoff (27%) in the region's hydrology. The finding of this study can be applied to improve the hydrological modelling and predictions in data-scarce regions.
Kokoelmat
- Avoin saatavuus [35294]